#### Заключение

Таким образом, на сегодняшний день в Республике Беларусь создан современный комплекс машин для послеуборочной доработки картофеля. Разработанные технические средства по своим технологическим параметрам не уступают импортным аналогам, а в условиях хозяйств зарекомендовали себя как надежная и высокопроизводительная техника.

23 05 12

УДК 631.356:635.132(476)

А.Л. Рапинчук, Д.И. Комлач, В.В. Голдыбан, И.А. Барановский (РУП «НПЦ НАН Беларуси по механизации сельского хозяйства», г. Минск, Республика Беларусь)

ОБОСНОВАНИЕ СХЕМЫ МОРКОВОУБОРОЧНОЙ МАШИНЫ

## Введение

Одной из основных овощных культур в Беларуси является столовая морковь. Корнеплоды моркови обладают высокими вкусовыми и диетическими качествами, используются в свежем виде, в соленьях, как приправа к пище, для изготовления морса, морковного сока. Благодаря большому содержанию витаминов и минеральных солей морковь пользуется большим спросом у населения всех стран мира.

В Беларуси под столовую морковь отводят площадь свыше 3,2 тыс. *га*, а валовой сбор превышает 78 тыс. *т* в год, ее возделывают порядка 600 овощеводческих хозяйств страны. Значительную часть урожая моркови перерабатывает консервная промышленность.

РУП «НПЦ НАН Беларуси по продовольствию» в результате выполненных научных исследований рекомендует довести потребление корнеплодов моркови до 10 кг в год, чего можно достичь в том случае, если ее валовой сбор составит 100 тыс. *т* в год.

Добиться этого можно двумя путями: увеличением посевных площадей под морковь и повышением ее урожайности. К сожалению, быстро увеличить производство моркови не представляется возможным из-за отсутствия полной или комплексной механизации ее возделывания.

Наиболее важной проблемой при возделывании моркови является уборка. На сегодняшний день уровень комплексной механизации по республике не достигает и 10–15 % [1, с. 208]. Затраты труда на выращивание этой культуры составляют 700–800 чел.-ч/га.

Принятая в декабре 2010 г. постановлением Совета Министров Республики Беларусь «Государственная комплексная программа разви-

тия картофелеводства, овощеводства и плодоводства на 2011–2015 годы» явилась важным этапом в развитии механизации овощеводства [2].

Программой предусмотрено дальнейшее совершенствование технических средств для уборки овощей как основа увеличения их валового сбора.

#### Основная часть

Технологический процесс уборки моркови включает ее извлечение из почвы, удаление ботвы, очистку от почвенных и растительных примесей. Очередность выполнения этих операций может меняться в зависимости от принятой технологии уборки, но общий комплекс уборочных операций остается неизменным.

В мировой практике применяется две разновидности технологического процесса уборки моркови:

- удаление ботвы до извлечения корнеплодов из почвы с последующим их выкапыванием и очисткой от почвенных, растительных и других примесей;
- извлечение корнеплодов из почвы за ботву с последующим отделением ботвы и почвенных примесей.

По первому способу работают машины выкапывающего типа, по второму – теребильного (рисунок 94).





a) выкапывающего типа;  $\delta$ ) теребильного типа

Рисунок 94 - Машины для уборки моркови

В последние годы все крупные овощеводческие хозяйства страны применяют второй способ уборки, с использованием машин теребильного типа. В Республике Беларусь насчитывается около 25 таких машин, и все они зарубежного производства.

Работу машин обоих типов оценивают согласно ТКП 321–2011 «Машины для уборки овощных и бахчевых культур», а оценку качества корнеплодов проводят согласно ГОСТу 1721–85 «Морковь столовая свежая заготовляемая и поставляемая» (таблица 26).

В соответствии со специфическими особенностями моркови подкапывающие рабочие органы комбайна должны обеспечивать выкапыва-

ние на глубину до 30 см не менее 99 % растений с извлечением из почвы не менее 98 % корнеплодов [3, с. 10]. Для более полного отделения моркови от почвенного пласта с сорняками выкапывающие рабочие органы машины должны поднимать почвенный пласт на высоту до 10 см. Таким качеством обладает лемех с активным приводом. Отличительная черта активного лемеха — самоочищение лезвия и активное перемещение пласта по лемеху при любом состоянии почвы, что для наших условий уборки моркови очень актуально.

Таблица 26 – Агротехнические требования, предъявляемые к машинам для уборки моркови

| Показатель по ГОСТу 1721-85                          | Нормативы, % |
|------------------------------------------------------|--------------|
| Полнота сбора корнеплодов, %                         | не менее 98  |
| Наличие земли, прилипшей к корнеплодам, % от массы   | не более 1   |
| Количество корнеплодов с длиной ботвы после обрезки: |              |
| от 0 до 0,02 м                                       | не менее 85  |
| от 0,02 до 0,05 м                                    | не более 15  |
| Повреждения, %                                       | не более 10  |
| Коэффициент надежности технологического процесса     | не ниже 0,95 |
| Потери корнеплодов при выкапывании, %                | не более 4   |

На качественные показатели работы уборочных машин существенное влияние оказывают сроки уборки.

С одной стороны, слишком раннее начало уборки (конец августа – начало сентября) ведет к недобору урожая по массе. Морковь, убранная рано, хуже хранится до ее переработки. С другой стороны, уборку необходимо начинать не позже определенного срока с тем, чтобы успеть закончить ее до наступления морозов и снегопадов. Во избежание крупных невозвратимых потерь в Беларуси следует завершить уборку к 15–20 октября. Не менее важным показателем уборочных машин является производительность. Проведенный анализ возможных способов механизированной уборки корнеплодов методом выкапывания и теребления показал, что повышение производительности уборочной машины возможно за счет увеличения количества убираемых рядков, рабочей скорости и коэффициента использования времени смены.

В специализированных овощеводческих хозяйствах Республики Беларусь посевная площадь моркови составляет 70-80  $\epsilon a$ , производительность однорядной морковоуборочной машины -0,6-1,0  $\epsilon a/u$ . Исходя из этих данных, можно сделать вывод, что однорядная морковоуборочная машина соответствует требованиям к уборке моркови с минимальными потерями. Изготовление 2-рядной машины для таких площадей повлечет за собой увеличение себестоимости продукции.

Также необходимо учитывать, что корнеплоды моркови очень чувствительны к ударам. Процент поврежденных корнеплодов возрастает с 7,5 до 83,3 в зависимости от высоты падения и материала рабочей поверхности удара.

По данным А.Н. Тимофеева, предельная высота, при которой не происходит повреждений корней моркови, равна: при падении на стальную поверхность  $H_{\rm cr}=0.10~{\rm M}$ ; на дерево  $-H_{\rm g}=0.24~{\rm M}$ ; на резину  $-H_{\rm p}=0.25$ ; на слой моркови  $-H_{\rm k}=0.24~{\rm M}$ .

При создании морковоуборочной машины необходимо также учитывать технологию механизированной подготовки поля для уборки моркови. При существующей технологии для обеспечения возможности первого прохода морковоуборочной машины и движущегося рядом транспортного средства необходимо убрать вручную 18–22 % площади поля.

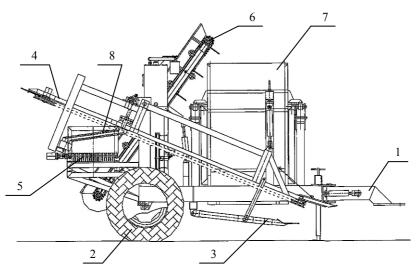
Применение на уборке моркови уборочных агрегатов с технологической емкостью для корнеплодов позволяет полностью механизировать процесс подготовки поля, повысить на 35–40 % производительность транспорта и снизить на 60–70 % потребность в универсальнопропашных колесных тракторах.

Первоначально необходимо убирать морковь с поворотных полос, затем — с проездов между загонами и, наконец, с самих загонов. Первый проход следует начинать с четвертого рядка, делая отсчет от стыкового междурядья влево, или с третьего рядка от стыкового междурядья вправо. При подготовке загонов корнеплоды, накапливающиеся в технологической емкости, разгружают в транспортные средства на поворотных полосах.

Машины выкапывающего типа, а это чаще всего переоборудованные картофелекопатели, которые применяются в республике для уборки моркови, не в состоянии обеспечить качественный технологический процесс уборки корнеплодов в соответствии с изложенными выше требованиями, без повреждения продукции. Ворох корнеплодов моркови, убранных как отечественными, так и зарубежными машинами данного типа, требует доработки, включающей операции доочистки корнеплодов от необрезанных листьев ботвы, растительных примесей и камней.

Более полно удовлетворяют агротехническим требованиям машины теребильного типа. Их основное преимущество состоит в том, что при работе не является серьезной проблемой очистка корнеплодов от почвенных комков, камней и других механических примесей. На однострочных посевах корнеплодов при хорошем состоянии ботвы и незначительной засоренности поля машины теребильного типа по всем агротехническим показателям обеспечивают лучшие результаты, чем машины с обрезкой ботвы на корню.

Ведущие мировые лидеры по производству техники для уборки овощей («Asa-lift», «Simon», «Dewulf», «Pik Rite») уже вышли на мировой рынок с предложениями поставки комбайнов, обеспечивающих качественную уборку моркови методом теребления без повреждения продукции (рисунок 95). Применение таких машин позволяет сократить затраты труда, расход топлива и в конечном итоге повысить рентабельность отрасли.




a) «Pik Rite»;  $\delta$ ) «Dewulf» с бункером на 3 m Рисунок 95 — **Машины** для уборки моркови

Имеющиеся в республике научно-технический потенциал и производственные возможности машиностроительных предприятий обусловливают целесообразность разработки и внедрения в производство конкурентоспособных машин для механизации овощеводства. Освоение производства таких машин исключает завоз подобных из-за рубежа, что обеспечивает экономию валютных средств.

Учитывая климатические условия Республики Беларусь, физикомеханические свойства столовой моркови, требования, предъявляемые к машинной уборке, засоренность полей, считаем, что перспективным направлением совершенствования машин для уборки моркови методом теребления является их исполнение в виде полуприцепной рамы 1 на колесном ходу 2, на которой монтируются основные рабочие органы машины: подкапывающий лемех 3, теребильный аппарат ленточного типа 4, роторный ботвоотделяющий аппарат 8, поперечный 5 и выгрузной 6 транспортеры; бункер 7 с подвижным выгрузным транспортером (рисунок 96).

Технологический процесс работы морковоуборочной машины заключается в следующем. При перемещении агрегата по участку ботвоподъемники, двигаясь у самой земли около рядков, поднимают ботву и направляют ее в устье теребильного аппарата 4. Одновременно подкапывающий лемех 3, продвигаясь под рядком в земле, рыхлит ее, нарушая связь корнеплодов с почвой. Теребильные ремни зажимают между собой ботву, извлекают морковь из земли и доставляют к ботвоотделяющему аппарату 8.



1 — рама; 2 — ходовая часть; 3 — подкапывающий лемех; 4 — теребильный аппарат; 5 — поперечный транспортер; 6 — выгрузной транспортер; 7 — приемный бункер; 8 — роторный ботвоотделяющий аппарат

Рисунок 96 – Конструктивная схема машины теребильного типа для уборки моркови

Теребильные аппараты ленточного типа представляют собой две гибкие бесконечные ленты, ведущие рабочие ветви которых прижимаются друг к другу прижимными роликами.

Аппарат для отделения ботвы роторного типа состоит из 12 изогнутых планок, собранных по шесть в двух соседних дисках. Диски с планками вращаются навстречу друг другу, в результате чего корнеплоды головками подтягиваются до упора к планкам, ботва обламывается. Вследствие наклонного положения дисков планки совершают сложные пространственные перемещения и, кроме подтягивания, осуществляют транспортирование корнеплодов вдоль поверхности выравнивания. После отделения ботва сбрасывается на поверхность поля, а отгрузка убранной части урожая будет осуществляться выгрузным транспортером 6 в рядом идущее транспортное средство либо, например, при отбивке поворотных полос и загонок — непосредственно в бункер 6. Привод основных рабочих органов гидравлический, от автономной гидросистемы машины.

### Заключение

С учетом требований, предъявляемых к комбайновой уборке моркови, преимуществ и недостатков машин подкапывающего и теребильного типов и мировых тенденций развития морковоуборочной техники следу-

ет признать перспективным направлением совершенствования средств механизированной уборки моркови их конструктивное исполнение в виде однорядного комбайна, оборудованного активным подкапывающим лемехом, теребильным аппаратом ленточного типа, роторным ботвоот-деляющим аппаратом, поперечным и выгрузным транспортерами; опрокидывающимся бункером с подвижным днищем для выгрузки убранной моркови в транспортное средство. Такая конструкция позволит повысить производительность морковоуборочной машины и в 2,5–3 раза сократить затраты труда.

04.06.12

# Литература

- 1. Попков, В.А. Овощеводство Беларуси / В.А. Попков. Минск: Наша идея, 2011. 1088 с.
- 2. Государственная комплексная программа развития картофелеводства, овощеводства и плодоводства в 2011–2015 годах: официальное издание. Минск: Беларусь, 2010. 144 с.
- 3. Диденко, Н.Ф. Машины для уборки овощей / Н.Ф. Диденко. М., 1973. 278 с.

УДК 631.348:378.663 (476.6)
П.В. Заяц
(СРУСП «Шиловичи»,
д. Шиловичи, Слонимский р-н,
Гродненская обл., Республика Беларусы)

ИССЛЕДОВАНИЕ
ЭКСПЛУАТАЦИОННЫХ
ПАРАМЕТРОВ
КОМБИНИРОВАННОГО
АГРЕГАТА ДЛЯ СБОРА
КОЛОРАДСКОГО ЖУКА

### Введение

Получению высоких урожаев картофеля наряду с другими факторами препятствуют вредители. Потери урожая этой культуры от колорадского жука могут составлять от 8 до 80 %.

При выращивании товарного урожая для борьбы с колорадским жуком наиболее широко применяется химический метод, который, однако, является нежелательным при получении экологически чистого картофеля, план производства которого доведен до ряда сельскохозяйственных предприятий нашей республики. Борьба с колорадским жуком — один из решающих факторов достижения высокой урожайности картофеля. При получении экологически чистого продукта необходимо производить своевременный и качественный сбор колорадского жука с ботвы картофеля. Однако машин для этих целей наша промышленность не выпускает.

Поэтому исследование и разработка технологий и средств механизации, позволяющих качественно и с наименьшими затратами производить сбор колорадского жука с ботвы картофеля, с целью получения