УДК 631.331.022

С.Г. Яковчик, Ю.Л. Салапура, В.П. Чеботарев

(РУП «НПЦ НАН Беларуси по механизации сельского хозяйства», г. Минск, Республика Беларусь);

Д.В. Зубенко

(УО «МГАТК», п. Марьино, Минская обл., Республика Беларусь) РЕЗУЛЬТАТЫ
ЭКСПЕРИМЕНТАЛЬНЫХ
ИССЛЕДОВАНИЙ
ВЕРТИКАЛЬНОГО
РАСПРЕДЕЛИТЕЛЯ
ПНЕВМАТИЧЕСКОЙ
СИСТЕМЫ ВЫСЕВА

Ввеление

Увеличение производства зерна было и остается ключевой задачей сельского хозяйства, решение которой служит основой продовольственной безопасности страны. Поэтому Государственной программой устойчивого развития села на 2011-2015 годы предусматривается доведение валового сбора зерна в республике в 2015 году до 12 млн m [1]. Хотя селекционерами получены сорта хлебных злаков урожайностью более 80 у/га, на практике она не по всем культурам превышает 50 % [2]. Зависит это от ряда значимых факторов: почвенно-климатических условий, сорта семян возделываемых культур, количества вносимых удобрений и средств защиты растений, качества почвообработки и посева. Однако даже при благоприятных факторах получение высокого урожая невозможно без применения надлежащей технологии возделывания и технических средств для ее реализации. От того, насколько правильно и в требуемые агротехнические сроки для конкретных условий будет подготовлена почва под посев, равномерно распределены семена по площади поля и заделаны на требуемую глубину, зависит их полевая всхожесть, выживаемость, интенсивность дальнейшего развития и в конечном итоге – величина урожая.

Для решения поставленных задач необходимо применение высокопроизводительных широкозахватных зерновых сеялок и комбинированных почвообрабатывающе-посевных агрегатов, на которых нашли применение пневматические системы высева.

Анализ исследований и публикаций

В настоящее время в мировой практике производства посевных машин, в которых в качестве транспортирующего элемента используется воздушный поток, различают три типа высевающих систем: централизованного (одно- и двухступенчатые), индивидуального и группового дозирования посевного материала.

В последние годы находят все более широкое применение пневматические сеялки с системой централизованного дозирования семян. Такая система, как правило, имеет раздельно-агрегатную компоновку ос-

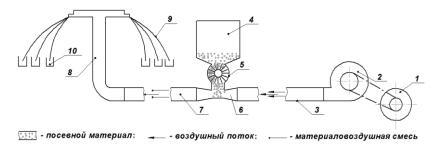
новных рабочих органов, при которой машина состоит из отдельных блоков (модулей). Это позволяет разнести в пространстве бункер и рабочие органы. Пневматическая централизованная система высева и раздельно-агрегатная компоновка позволяют реализовать секционный принцип построения рамы посевного блока, при котором ее складывание происходит в вертикальной плоскости. Данное решение помогает значительно ускорить процесс перевода агрегата из рабочего положения в транспортное и обратно, а следовательно, снизить общие непроизводственные затраты времени на переезды. Централизованный бункер сеялки позволяет снизить количество и продолжительность технологических остановок на заправку семенами.

Основным недостатком посевных машин с централизованной пневматической системой высева является высокая неравномерность распределения посевного материала по сошникам. В некоторых случаях неравномерность может составлять 15,5 % и более при агротехнически допустимых 5 % для семян зерновых и 6 % для зернобобовых культур [3]. Основными последствиями этого являются нерациональный расход семенного материала, снижение урожайности, рост засоренности полей, уменьшающие эффективность использования сеялок с пневматической системой высева [4]. Поэтому совершенствование систем высева пневматических сеялок является актуальной задачей в области механизации посева.

Анализ преимуществ и недостатков отдельных элементов пневматической высевающей системы, оказывающих влияние на технологический процесс, позволил сделать вывод о том, что одной из наиболее важных частей системы являются распределители посевного материала. Они должны обеспечивать качественную работу пневматической системы высева в соответствии с агротехническими требованиями по неравномерности распределения посевного материала по сошникам.

Анализ исследований и конструкций распределителей позволяет сделать вывод о том, что их наиболее целесообразно применять в виде распределителей посевного материала вертикального типа в пневматических системах. Однако для обеспечения агротехнических требований по неравномерности распределения посевного материала по сошникам необходимо их конструктивное совершенствование.

С целью совершенствования процесса распределения посевного материала, в проточном канале вертикальной колонны, отводе и распределительной головке размещают дополнительные элементы различного конструктивного исполнения (центраторы, турбулизирующие вставки и направители), повышающие турбулентность транспортирующего воздушного потока для создания более однородной материаловоздушной смеси по всему сечению и, следовательно, более равномерного распределения посевного материала по сошникам.


Теоретические и экспериментальные исследования, связанные с разработкой пневматических высевающих систем сеялок и их элементов, рассмотрены в работах зарубежных ученых Г. Хеега, В. Цереса, Г. Пиппинга, С. Хаммонда, а также отечественных ученых Ф.Г. Гусинцева, К.К. Куриловича, А.С. Сентюрова, Г.Н. Лысевского, В.С. Астахова, Г.М. Бузенкова, Н.П. Крючина, Н.И. Любушко, В.Н. Зволинского, М.С. Хоменко, Н.Н. Карягдыева, В.И. Смаглия и других.

Цель работы – провести экспериментальные исследования распределителя вертикального типа для определения влияния его конструктивных параметров на неравномерность распределения семян по сошникам.

Методика проведения исследований

Исследования проводились на экспериментальной установке, которая имитировала пневматическую систему высева централизованного дозирования посевного материала и предназначена для исследования рабочего процесса распределительного устройства.

Схема экспериментальной установки представлена на рисунке 8. Она состоит из электродвигателя 1, центробежного вентилятора высокого давления 2, бункера 4 с дозатором катушечного типа для семян 5, эжекторного питателя 6, пневмопровода 3 и пневмоматериалопровода 7 диаметром 140 *мм* и длиной 5,6 *м*, 36-канального распределителя посевного материала вертикального типа 8, семяпроводов 9 диаметром 32 *мм*, сборника для семян 10. Привод дозатора осуществлялся от электромотора через цепную передачу.

1 — электродвигатель; 2 — вентилятор; 3 — пневмопровод; 4 — бункер для семян; 5 — дозатор; 6 — эжекторный питатель; 7 — пневмоматериалопровод; 8 — распределитель; 9 — семяпровод; 10 — сборник семян

Рисунок 8 – Технологическая схема экспериментальной установки

При проведении опытов в качестве высеваемого материала использовались семена зерновых и зернобобовых культур: пшеница, ячмень, рожь, люпин и соя. Норма высева устанавливалась, исходя из средней хозяйственной нормы высева для условий Республики Беларусь, и со-

ставляла: для семян пшеницы — $210 \ \kappa z/za$, для семян ячменя — $222 \ \kappa z/za$, для семян ржи — $235 \ \kappa z/za$, для семян сои — $110 \ \kappa z/za$, для семян люпина — $97 \ \kappa z/za$. Перед началом проведения экспериментальных исследований определялись наиболее значимые физико-механические свойства посевного материала. При этом использовались семена только посевных кондиций. Влажность посевного материала определялась влагомером МГ-4, объемная масса — объемным и весовым методом, геометрические параметры — штангенциркулем ШЦ-I-125-0,05. Основные физико-механические свойства используемых культур представлены в таблице 1.

Таблица 1 – Физико-механические свойства семян

	Значение показателей							
Наименование показателей	культура							
	пшеница	рожь	ячмень	соя	люпин			
Эквивалентный диаметр, мм	3,8	3,6	4,0	6,1	6,7			
Масса 1000 семян, г	38,3	37,3	39,1	198,5	205,7			
Влажность семян, %	13,4	14,1	14,5	14,7	15,0			
Объемная масса, кг/м ³	735	730	710	750	760			
Плотность, $\kappa \epsilon / M^3$	1360	1375	1360	1320	1390			

Для определения количества повторностей опыта при выявлении средней арифметической величины многократных измерений одного и того же объекта задавались следующими величинами:

- доверительной вероятностью α_0 , т. е. вероятностью того, что значения измеряемой величины не выйдут за доверительные пределы $\pm \Delta x$;
- ullet допустимой ошибкой arepsilon, выраженной в долях среднеквадратичного отклонения δ_{∂} .

При проведении экспериментальных исследований достаточный уровень доверительной вероятности принят $\alpha_0=0.95$. Из теории ошибок следует, что результаты измерений одной и той же величины лежат в пределах $\pm 3\,\delta_0$. Для заданной доверительной вероятности $\alpha_0=0.95$ и предельной ошибки $\varepsilon=\pm 3\,\delta_0$ количество повторностей опыта принято равным n=3 [5].

Для оценки равномерности распределения высеваемого материала по семяпроводам до начала опыта устанавливался требуемый режим работы установки. Необходимая норма высева обеспечивалась путем изменения частоты вращения катушки и длины ее рабочей части. Контрольный высев проводили в течение одной минуты, что достаточно для стабилизации процесса высева. Высеянный в отдельные сборники посевной материал взвешивали с точностью до одного грамма на весах ВЭУ-6-1/2 (ТУ 25-7724-010-98). Численные значения массы высеваемого материала, попавшего из каждого семяпровода в сборник, рассматривались как вариационный ряд.

Факторы, оказывающие наибольшее влияние на неравномерность распределения посевного материала по семяпроводам, определялись в результате априорного ранжирования. Для нахождения зависимости равномерности распределения посевного материала по семяпроводам (коэффициента вариации v) от конструктивных параметров распределителя (угла сужения конфузора β и выходного диаметра конфузора d) применялся метод планирования эксперимента при оптимизации факторных процессов.

Функциональная зависимость между параметром оптимизации и факторами записывается выражением:

$$v = f(\beta, d)$$
,

где f — функция отклика.

Для сокращения количества опытов применялся ортогональный центральный композиционный план второго порядка для 2 факторов.

Для параметра оптимизации проведено 9 вариантов опыта. Значения факторов на нулевом уровне выбирались по результатам поисковых экспериментов [6]. Перед началом эксперимента факторы кодировались. Кодирование факторов осуществлялось по формуле [7]:

$$x_i = \frac{C_i - C_{0i}}{\varepsilon},$$

где x_i — кодированное значение фактора;

 C_i , C_{0i} — натуральные значения фактора (соответственно его текущее значение и значение на нулевом уровне);

arepsilon — натуральное значение интервала варьирования фактора.

Факторы и уровни их варьирования представлены в таблице 2.

Таблица 2 – Уровни варьирования факторов

Варьируемые параметры	β	d
Единицы измерения	град.	мм
Кодовые обозначения факторов	x_1	x_2
Основной уровень ($x_i = 0$)	14	90
Интервал варьирования	6	10
Нижний уровень $(x_i = -1)$	8	80
Верхний уровень $(x_i = +1)$	20	100

Все эксперименты проводились в трехкратной повторности. Полученные результаты усреднялись и округлялись. С целью исключения влияния систематических ошибок, вызванных внешними неконтролируемыми факторами, в ходе экспериментальных исследований выполнялась рандомизация опытов, под которой понимается чередование отдельных опытов в случайном порядке. Это позволило сравнивать результаты подобных опытов вследствие усреднения влияния эффектов неконтролируемых факторов. Процедура рандомизации опытов выпол-

нялась с помощью таблиц случайных чисел [8], при этом, последовательно двигаясь по столбцам таблицы, были выбраны числа, соответствующие порядковым номерам проводимых опытов.

Результаты исследований

Матрица планирования экспериментальных исследований и результаты обработки опытов для семян пшеницы приведены в таблице 3.

№	Факторы и их взаимодействие										$S^2\{v_i\}$	ô
	x_0	x_1	x_2	x_1x_2	x_1^2	x_2^2	v_1	v_2	v_3	$ar{v}_i$	$S\{v_i\}$	ν_{i}
1	1	-1	-1	1	0,33	0,33	4,62	4,48	4,49	4,53	0,0061	4,51
2	1	1	-1	-1	0,33	0,33	2,81	2,72	2,71	2,75	0,00303	2,74
3	1	-1	1	-1	0,33	0,33	6,48	6,32	6,25	6,35	0,0139	6,37
4	1	1	1	1	0,33	0,33	6,19	5,94	5,91	6,01	0,0236	6,05
5	1	-1	0	0	0,33	-0,67	4,62	4,43	4,75	4,6	0,0259	4,6
6	1	1	0	0	0,33	-0,67	3,51	3,51	3,72	3,58	0,0147	3,55
7	1	0	-1	0	-0,67	0,33	2,55	2,65	2,76	2,65	0,01103	2,68
8	1	0	1	0	-0,67	0,33	5,18	5,42	5,38	5,33	0,01653	5,27
9	1	0	0	0	-0.67	-0.67	3.1	3.13	3.11	3.11	0.00023	3.14

Таблица 3 – Матрица планирования эксперимента и результаты исследований

Обработка статистических данных производилась с помощью пакета прикладных программ Statistica 6.0 и Mathematica 7.0.

В итоге регрессионные уравнения второго порядка для параметра оптимизации каждой культуры в кодированном виде принимают следующий вил:

для ячменя:

$$\upsilon = 4,08 - 0,55 \cdot x_1 + 0,73 \cdot x_2 + 0,42 \cdot x_1 \cdot x_2 + 0,47 \cdot x_1^2 + 0,68 \cdot x_2^2;$$
для ржи:

$$\upsilon = 1,18-1,84 \cdot x_1 + 1,24 \cdot x_2 + 0,99 \cdot x_1 \cdot x_2 + 1,75 \cdot x_1^2 + 2,53 \cdot x_2^2;$$
 для пшеницы:

$$\upsilon = 3,\!13 - 0,\!52 \cdot x_1 + 1,\!29 \cdot x_2 + 0,\!36 \cdot x_1 \cdot x_2 + 0,\!94 \cdot x_1^2 + 0,\!84 \cdot x_2^2;$$
для люпина:

$$\upsilon = 4,44 + 0,08 \cdot x_1 + 0,77 \cdot x_2 - 0,14 \cdot x_1 \cdot x_2 - 0,79 \cdot x_1^2 + 0,37 \cdot x_2^2;$$
 для сои:

$$\upsilon = 3.14 - 0.25 \cdot x_1 + 0.58 \cdot x_2 + 0.45 \cdot x_1 \cdot x_2 - 0.32 \cdot x_1^2 + 1.56 \cdot x_2^2$$

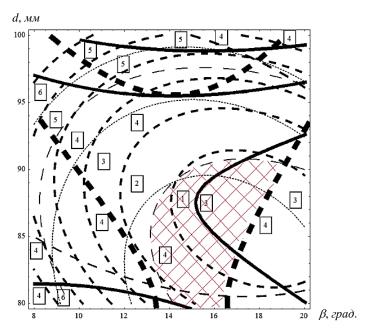

С помощью критерия Кохрена выполнялась проверка гипотезы об однородности дисперсий. Значимость коэффициентов уравнений проверялась по t-критерию Стьюдента согласно доверительному интервалу. Адекватность уравнений регрессии экспериментальным данным проверялась по F-критерию Фишера. Табличные значения критериев Кохрена и Фишера выбирались из соответствующей литературы [7]. Результаты оценки представлены в таблице 4.

Таблица 4 – Оценка критериев воспроизводимости и адекватности

	Значения критериев								
Культура	F	Кохрена (<i>G</i>)		Фишера (F)					
	табличное	габличное расчетное у		табличное	расчетное	условие			
Пшеница	0,478	0,225		3,16	1,188				
Ячмень	0,478	0,342		3,16	1,928	$F_T > F_p$			
Рожь	0,478	0,467	$G_T > G_p$	3,16	2,992				
Люпин	0,478	0,464	Î	3,16	2,088	,			
Соя	0,478	0,410		3,16	0,357				

Так как расчетные значения не превышают табличных, то, следовательно, уравнения адекватно описывают экспериментальные данные и являются воспроизводимыми.

С целью определения оптимальных параметров распределителя, удовлетворяющих параметру оптимизации, двумерные сечения параметров отклика, полученные по уравнениям регрессии, соединили воедино методом наложения (рисунок 9).

Pисунок 9 — Наложение двухмерных сечений поверхностей отклика (все культуры) $v = f(\beta, d)$

Из анализа графической зависимости следует, что область оптимума для данных факторов находится в следующих пределах: угол суже-

ния конфузора $\beta = 14...17^{\circ}$; диаметр выходного конфузора d = 80...92 мм.

Заключение

- 1. Получены уравнения регрессии, устанавливающие зависимость неравномерности распределения посевного материала по сошникам от конструктивных параметров распределителя.
- 2. Уравнения регрессии, полученные в результате эксперимента, позволили определить параметры дополнительных элементов распределителя, обеспечивающие требуемую неравномерность распределения посевного материала. Так, угол сужения конфузора $\beta=14...17^{\circ}$, а выходной диаметр d=80...92 мм. При этих условиях неравномерность распределения семян зерновых культур по сошникам составляет 3,8–4,3 %, а зернобобовых 3,9–4,7 %.

08.10.2014

Литература

- 1. Синягин, И.И. Площади питания растений / И.И. Синягин. М.: Россельхозиздат, 1966. 144 с.
- 2. Кукреш, Л.В. Потенциал растениеводства Беларуси и его реализация / Л.В. Кукреш // Весці Нац. акад. навук Беларусі. Сер. аграрных навук. 2008. № 3. С. 34–39.
- Машины посевные и посадочные. Правила установления показателей назначения: ТКП 078–2007. Введ. 06.08.2007. Минск: Белорус. научн. ин-т внедрения новых форм хозяйствования в АПК, 2007. 40 с.
- 4. Пятаев, М.В. Качество посевных работ при использовании сеялок с пневматическим высевающим аппаратом / М.В. Пятаев // Достижения науки агропромышленному производству: материалы XLVIII междунар. науч.-техн. конф. / ЧГАУ. Челябинск, 2009. Ч. 2. С. 60—64.
- 5. Фатеев, М.Н. Основы планирования эксперимента в сельскохозяйственных машинах: руководящий технический материал / М.Н. Фатеев, М.М. Фирсов. М.: ВИСХОМ, 1974. 116 с.
- 6. Медведев, А.Л. Некоторые результаты экспериментальных исследований централизованного распределителя посевного материала / А.Л. Медведев, Ю.Л. Салапура, Д.В. Зубенко // Механизация и электрификация сельского хозяйства: межвед. тематич. сб. / РУП «НПЦ НАН Беларуси по механизации сельского хозяйства»; под общ. ред. П.П. Казакевича. Минск, 2011. Вып. 45. С. 94—99.
- Тихомиров, В.Б. Планирование и анализ эксперимента (при проведении исследований в легкой и текстильной промышленности) / В.Б. Тихомиров. – Москва: Легкая индустрия, 1974. – 262 с.
- 8. Мельников, С.В. Планирование эксперимента в исследованиях сельскохозяйственных процессов / С.В. Мельников, В.Р. Алешкин, П.М. Рощин. Ленинград: Колос, 1972. 200 с.