УДК 631.331.022

А.Н. Юрин

(РУП «НПЦ НАН Беларуси по механизации сельского хозяйства», г. Минск, Республика Беларусь)

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ТУННЕЛЬНОГО УСТРОЙСТВА ШАТРОВОГО ОПРЫСКИВАТЕЛЯ ДЛЯ САДОВ ИНТЕНСИВНОГО ТИПА

Ввеление

Садоводство является важнейшей отраслью сельского хозяйства, которая обеспечивает население плодами и ягодами — одним из основных источников витаминов, минеральных веществ и биологически активных соединений, крайне необходимых для нормального функционирования человеческого организма. В то же время на одного жителя республики производится только 60 килограммов плодов и ягод при научно обоснованной медицинской норме 93 килограмма. В результате республика ежегодно импортирует от 300 до 600 тыс. тонн свежих яблок, груш, ягод на сумму 400–600 млн долларов США [1].

Тенденция развития садоводства показывает, что в настоящее время осуществляется переход от экстенсивных сильнорослых насаждений к интенсивным насаждениям на слаборослых клоновых подвоях. Они раньше вступают в плодоношение, имеют малогабаритную крону, удобную для ухода и сбора урожая, формируют высококачественные плоды, экономическая эффективность производства в таких садах выше в 1,5–2 раза [2].

В настоящий момент в сельскохозяйственных организациях республики имеется 20 тыс. ϵa плодово-ягодных насаждений интенсивного типа.

Важным агротехническим приемом по уходу за садом является защита деревьев от вредителей и болезней. За один сезон количество химических обработок в садах может проводиться 10–17 раз [3].

Химические средства защиты растений гарантируют высокую эффективность в борьбе с вредителями и болезнями, защиту урожая, но в то же время большинство из них ядовито для человека и животных, полезных насекомых и птиц. Поэтому широкое применение химических средств имеет свои отрицательные стороны. Очевидно, что необходимо стремиться к минимизации применения химических средств защиты.

Основная часть

Известно, что борьба с вредителями и болезнями плодовых деревьев и кустарников в садах может принести пользу, если ее проводить одновременно на всех участках. Разрозненные меры защиты сада менее эффективны, так как бабочки и жуки перелетают, гусеницы переползают, клещи переносятся ветром на здоровые деревья и кустарники. Поэтому

время проведения операции химической защиты плодовых деревьев в саду ограничено 3 сутками. Этот фактор обусловливает потребность крупных хозяйств в большом количестве опрыскивателей.

В настоящее время для обработки садов рабочими растворами ядохимикатов применяются вентиляторные опрыскиватели как отечественного, так и импортного производства (рисунки 1–3). Однако такие опрыскиватели имеют много недостатков [4, 5].

Вредное воздействие ветра на объем и проникновение жидкости для опрыскивания при применении опрыскивателей вентиляторного типа является общеизвестной помехой в правильном проведении процедуры обработки садов. Единственная возможность снижения вредного воздействия ветра в данном случае — выбор времени, когда ветра нет. Иногда изза сильного ветра даже опрыскивание ночью оказывается невозможным. Очень часто промежутки времени без ветра приходится долго ждать, а поздняя процедура опрыскивания иногда причиняет убытки, значительно более высокие, чем цена нового опрыскивателя.

Итогом функционирования таких опрыскивателей является то, что потери рабочего раствора на почву и в атмосферу достигают от 90 % до 30 %, в зависимости от периода обработки, что существенно увеличивает вредное воздействие на окружающую среду. При весенних обработках потери достигают максимальных величин и постепенно снижаются по мере развития и увеличения листостебельной массы растений. Возникающее облако из мелкодисперсного раствора ядохимикатов при работе вентиляторных опрыскивателей может достигать расположенных рядом жилищно-бытовых построек и зон отдыха людей.

Устранить вышеуказанные недостатки существующей технологии химической обработки садов возможно за счет создания и внедрения в производство новых технологий, в частности опрыскивания с помощью шатровых опрыскивателей. При работе таких опрыскивателей обработка

Рисунок 1. – Опрыскиватель «ЗУБР ПВ» фирмы ООО «СелАгро»

Рисунок 2. — Опрыскиватель «Мекосан-2000-В2» фирмы ОАО «Мекосан»

Рисунок 3. — Опрыскиватель Rall 2000 С фирмы Rall, производство УП «АЗАТ»

растений осуществляется в закрытой камере. На растениях остается то количество рабочего раствора, которое может удержать листостебельный аппарат растения и его плоды. Капли рабочего раствора, не осевшие на растениях, улавливаются специальными устройствами и возвращаются обратно в основной бак опрыскивателя.

За рубежом производством садовых опрыскивателей туннельного типа занимаются производители сельскохозяйственной техники из Италии, Польши, Голландии и других стран.

Польская фирма Krukowiak, производящая машины и приспособления для сельского хозяйства, предлагает широкий ассортимент опрыски-

вателей, в том числе туннельных (рисунок 4).

Голландская фирма Munckhof производит шатровый опрыскиватель Wine Tunnel (рисунок 5).

Немецкая компания Lipco – крупнейший производитель шатровых опрыскивателей в Западной Европе. В ассортименте выпускаемой продукции – туннельные опрыскиватели для возделывания винограда, фруктов, хмеля, роз и других культур, отличающиеся экономией на затратах и удовлетворяющие экологическим требованиям по защите растений. Компания выпускает машины одно-, двух-, трех- и четырехрядного исполнений (рисунок 6).

Таким образом, необходимость разработки и внедрения в производство опрыскивателя туннельного типа, позволяющего уменьшить расход гербицида и снизить пестицидную нагрузку на окружающую среду, является актуальной агроинженерной задачей в республике.

Для ее решения с 2014 года в РУП «НПЦ НАН Беларуси по механизации сельского хозяйства» ведутся работы по созданию туннельных опрыскивателей.

Рисунок 4. – Садовый шатровый опрыскиватель Ekosad-Tunel

Рисунок 5. – Опрыскиватель Wine Tunnel в работе

Рисунок 6. – Двухрядный шатровый опрыскиватель Lipco

Для определения рациональных параметров туннельного опрыскивателя в РУП «НПЦ НАН Беларуси по механизации сельского хозяйства» была разработана КД и изготовлен макетный образец шатрового устройства туннельного опрыскивателя (рисунок 7).

а) вид спереди слева; б) вид справа; в) вид спереди справа

Рисунок 7. — Внешний вид макетного образца туннельного устройства шатрового опрыскивателя для садов интенсивного типа

Шатровое устройство туннельного опрыскивателя представляет собой рамную конструкцию портального типа, оснащенную двумя коробами с установленными в них всасывающими вентиляторами (по два в каждом коробе). Устройство приводится в движение посредством лебедки и передвигается вдоль ряда деревьев. В верхней части рамы установлен кронштейн, позволяющий регулировать ширину туннеля в диапазоне от 700 до 1200 мм. Шатровое устройство оборудовано баком на 20 литров для химического раствора, насосом, регулятором давления, фильтром, шестью распылителями и соединительными трубопроводами. В нижней части устройства предусмотрен поддон для сбора стоков не осевшей на растения жидкости.

Краткая техническая характеристика шатрового устройства туннельного шатрового опрыскивателя приведена в таблице 1.

Таблица 1. – Краткая техническая характеристика туннельного устройства

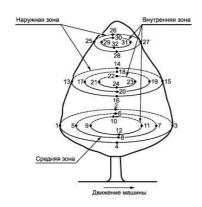
Наименование показателя	Значение показателя	
Привод	электрический	
Рабочая ширина захвата на культурах, м	0,7-1,2	
Основная ширина междурядий, на которые рассчитан опрыскиватель, M	не менее 3,0	
Потребляемая мощность, кВт	$1,35 \pm 0,2$	
Рабочая скорость на обработке культур, км/ч	2–7	
Габариты опрыскивателя в рабочем положении, мм:		
– длина	1650	
– ширина	2600	
– высота	1580	
Hacoc:		
– тип и марка	W2 750	
– число насосов, шт.	1	
– потребляемая мощность, кВт	0,75	
 – максимальное рабочее давление, MПа 	0,78	
– производительность при максимальном давлении, л/мин	48	
Вентилятор (воздушный нагнетатель):		
– тип и марка	МПЕК 3.120.000	
– число вентиляторов, шт.	2	
– частота вращения рабочего колеса, c^{-1}	3200	
– потребляемая мощность, кВт	0,3x2	
Струеобразующее устройство:		
– тип и форма сопла	конусное	
– число сопел, шт.	6	
 пределы регулировки угла установки сопла к горизонту, град. 	0-30	
— расход жидкости через распылитель (сопло), $\partial M^3/M$ ин	не более 4,2	

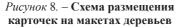
Для определения рациональных параметров и режимов работы туннельного опрыскивателя были проведены экспериментальные исследования функционирования макетного образца шатрового устройства.

Метеорологические условия (температуру и относительную влажность воздуха, скорость ветра и направление ветра по отношению к движению машины) определяли по ГОСТ 20915.

Рельеф и микрорельеф поля, влажность и твердость почвы определяли по ГОСТ 20915.

Густоту покрытия и дисперсность распыла жидкости опрыскивателями определяли при лабораторно-полевых исследованиях.


В качестве рабочей жидкости используется одно- или двухпроцентный водный раствор красителя черного.


Густоту покрытия и дисперсность распыла определяли на карточках из мелованной бумаги, обработанных пятипроцентным раствором парафина в толуоле (ортоксилоле) для уменьшения растекания улавливаемых капель.

Перед проведением опытов учетные карточки размещали по следующей схеме в зависимости от сельскохозяйственных культур:

- на макетах высокорослых плодовых культур в трех ярусах по высоте дерева (верхнем, среднем, нижнем), в трех зонах по глубине (наружной, средней, внутренней) для нижнего и среднего ярусов, а в верхнем ярусе в двух зонах (наружной и внутренней). В каждой зоне яруса размещали по четыре карточки во взаимно перпендикулярных плоскостях по схеме (рисунок 8). Размещение зон: внутренняя 0,5 м от ствола, средняя делит пополам расстояние между наружной и внутренней зонами. Всего развешивали 32 карточки размерами 50х70 мм;
- на макетах кустов виноградников и деревьев пальметтного сада развешивали 14 карточек размерами 50х70 *мм* каждая по схеме, показанной на рисунке 9.

Для обеспечения в камере опрыскивателя необходимой плотности распыленного вещества, которая может дать нужную густоту покрытия листьев, рабочее давление и размеры отверстий распылителей подбирались такими, чтобы подать значительно больше нормы вылива. При установленной норме вылива 600 л/гa фактически полученная норма вылива составляет 553,8 л/гa. Отклонение фактической нормы вылива от заданной – 7,7 %. По результатам измерения, фактическое отложение рабочего раствора на поверхность кустов составляет 147 л/гa, или 26,5 % от установленной нормы. Однако, поскольку рабочие камеры опрыскивателя оснащены системой улавливания, 70,5 % рабочего раствора возвращается

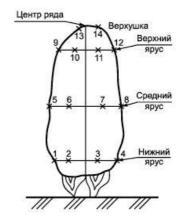


Рисунок 9. — Схема размещения карточек на моделях кустов

в бак опрыскивателя и только 3 % от внесенной нормы вылива теряется на почву и в окружающую среду (таблица 2).

Густота покрытия поверхности куста (количество капель больше $30 \ um./cm^2$) составила $92.8 \ \%$. Медианно-массовый диаметр капель – в пределах нормы и составляет $475 \ msm$.

Таблица 2. – Агротехнические показатели работы макетного образца шатрового устройства туннельного опрыскивателя

Наименование показателя	Значение
Неравномерность вылива жидкости между распылителями, %	6,03
Норма вылива рабочей жидкости через распылители, л/га:	
– установленная	600
– фактически полученная	553,8
 отклонение фактически полученной нормы вылива от установленной, % 	7,7
Отложение препарата на листостебельной массе, л/га	147
Количество препарата, который возвращен на регенерацию: $-\pi/za$ $-\%$	390,2 70,5
Потери препарата на почву и испарение: - л/га - %	16,6 3
Густота покрытия обработанной поверхности каплями (не меньше 30 <i>шт./см</i>), %	92,8

При этом расход топлива составил 1,55–1,79 кг/га.

Расчет экономической эффективности показал, что применение туннельного опрыскивателя позволяет получить годовой экономический эффект в размере 75451 тыс. $py\delta$., срок окупаемости капитальных вложений -0.53 года (таблица 3).

Таблица 3. – Показатели экономической эффективности туннельного опрыскивателя

	Значение		
Наименование показателя	базовый вариант	новый вариант	эффект
Прямые эксплуатационные расходы, тыс. руб./га	1973,04	607,82	1365,22
Приведенные затраты, тыс. руб./га	1998,93	627,08	1371,85
Удельные капвложения, тыс. <i>руб./га</i>	172,64	128,4	44,24
Годовой экономический эффект, тыс. руб.	-	75451,75	_
Срок окупаемости, лет	_	0,53	_

Заключение

Проведенные экспериментальные исследования показали актуальность создания и применения садовых опрыскивателей туннельного типа, позволяющих экономить до 70 % рабочего раствора при выполнении агротехнических требований к обработке садов интенсивного типа.

12.08.2015

Литература

- 1. Мержаниан, А.С. Виноградарство / А.С. Мержаниан. Изд. 3-е. М.: Колос, 1967. 464 с.
- 2. Виноградарство Крыма / А.П. Дикань [и др.]. Симферополь: Бизнес-Информ, 2001. 408 с.
- 3. Догода, А.П. Состояние и перспективы развития машин для безопасной технологии химической защиты многолетних насаждений / А.П. Догода // Наукові праці Південного філіалу Національного Університету біоресурсів і природокористування України «Кримський агротехнологічний університет». Технічні науки. Сімферополь, 2009. Вип. 122. С. 121—126.
- 4. Энциклопедия виноградарства: в 3 т. / Под. ред. А.И. Тимуш. Кишинев: Гл. ред. Молдавской сов. энциклопедии, 1987. Т. 3. 552 с.
- 5. Козарь, И.М. Справочник по защите винограда от болезней, вредителей и сорняков / И.М. Козарь. – К.: Урожай, 1990. – 205 с.