- Способы заделки пожнивных остатков кукурузы в почву // Земледелие. 1978.
 № 12. С. 56.
- Козлов, Н.С. Обоснование конструктивной схемы спирально-ножевидного рабочего органа / Н.С. Козлов // Механизация и электрификация сельского хозяйства: межвед. тематич. сб.: в 2 т. / РУП «НПЦ НАН Беларуси по механизации сельского хозяйства». – Минск, 2014. – Вып. 48. – Т. 1. – С. 61–65.
- 8. Машины и орудия для поверхностной и мелкой обработки почвы. Порядок определения функциональных показателей: ТКП 080–2007. Введ. 21.01.2008. Минск: Госстандарт: Белорус. гос. ин-т стандартизации и сертификации, 2008. 39 с.

УДК 631.363

И.М. Лабоцкий, С.Н. Конончук

(РУП «НПЦ НАН Беларуси по механизации сельского хозяйства», г. Минск. Республика Беларусь)

ПОЛУПРИЦЕПЫ
САМОСВАЛЬНЫЕ ТРАКТОРНЫЕ
ГРУЗОПОДЪЕМНОСТЬЮ
15 И 20 ТОНН НА
УНИФИЦИРОВАННЫХ
ДВУХОСНОМ И ТРЕХОСНОМ
ШАССИ

Введение

Рост объемов производства продукции неизбежно влечет за собой увеличение объемов перевозок сельскохозяйственных грузов. При этом затраты на транспортные, транспортно-технологические, погрузочно-разгрузочные работы варьируют в пределах от 20 до 30 процентов [1]. Вопросам повышения эффективности работы транспорта сельскохозяйственного назначения, снижения себестоимости перевозок и повышения производительности труда придается большое значение.

В условиях ограниченных трудовых ресурсов поставленная задача решается путем увеличения грузоподъемности и энергонасыщенности, а также снижения стоимости транспортных и транспортно-технологических систем за счет применения унифицированных быстросменных узлов и агрегатов (кузовов, шасси, рабочих органов, гидросистем и др.).

Системой машин для комплексной механизации сельхозпроизводства для перевозки сельскохозяйственных грузов предусматривается создание и применение свыше 20 типов тракторных прицепов и полуприцепов, в том числе 6 типов специальных [2]. Следует отметить, что техническое оснащение хозяйств республики для выполнения транспортных работ не превышает 60 % от технологической потребности, особенно недостает специальных транспортных и транспортно-технологических систем, кроме того, необходимо указать на техническое несовершенство применяемых систем: низкую грузоподъемность, маневренность и высокую затратность ресурсов на выполнение работ.

Анализ парка транспортных и транспортно-технологических систем, а также оценка объемов выполняемых грузоперевозок показывают, что сегодня порядка 45 % сельскохозяйственных грузов перевозится тракторными транспортными системами. Объясняется это небольшим радиусом перевозок грузов, а также спецификой грузов и условиями применения. Например, с помощью тракторных транспортных агрегатов перевозится: в Норвегии — 95 %, Германии — 80 %, Венгрии — 77 %, Чехии — 55 % сельскохозяйственных грузов [3].

С учетом специфики сельскохозяйственных грузов, характеристик и особенности условий применения специальных транспортных и транспортно-технологических систем настоящая работа посвящена созданию специальных полуприцепов грузоподъемностью $15\ m$ и свыше $20\ m$, включая унифицированные двухосное и трехосное шасси.

Состояние вопроса

Широкая номенклатура и разнообразие свойств сельскохозяйственных грузов существенно осложняют выбор и обоснование основных параметров транспортных и транспортно-технологических систем. Здесь необходимо учитывать влияние ряда основных специфических особенностей (свойств), характеризующих грузы, таких как: физико-механические и биохимические свойства; срочность и периодичность перевозок; условия перевозок; способы погрузки-разгрузки; количество и виды в рамках агротехнических сроков одновременно перевозимых грузов; использование грузоподъемности транспортных средств [4, 5].

Разнообразие специфических особенностей сельскохозяйственных грузов обусловило создание и применение в сельскохозяйственном производстве ряда транспортных и транспортно-технологических систем, а именно:

- полуприцепов самосвальных тракторных для приема, перевозки и выгрузки насыпных грузов;
- полуприцепов специальных со сменными адаптерами для приема с доуплотнением, транспортировки и выгрузки силосной и сенажной массы, а также зерна, комбикорма, корнеплодов, жома и других сыпучих кормов и материалов;
- полуприцепов для транспортировки и внесения твердых, полужидких и жидких органических удобрений внутрипочвенно и поверхностно;
- полуприцепов с манипуляторами для погрузки, перевозки и складирования рулонов, тюков и других штучных грузов, а также для разбора скирд и доставки кормов на фермы;

- полуприцепов кормораздатчиков для приема, транспортировки и раздачи кормов на фермах и кормовых площадках;
- полуприцепов кормосмесителей для приема, приготовления и раздачи кормосмесей на фермах и кормовых площадках;
- полуприцепов перегрузчиков зерна для накопления и перегрузки зерна от комбайнов;
 - полуприцепов платформ для перевозки животных.

Перечисленные системы применяются в соответствующие агротехнические сроки, сезонно и связаны с агротехническими сроками проведения работ по вывозке и внесению удобрений, посевных и уборочных работ. Кроме того, характерна неравномерность грузопотоков в связи с различными сроками созревания, колебания урожайности и погодными условиями. Перечисленные системы не имеют круглогодового применения. Значение их годовой нормативной загрузки варьирует в пределах от 250 до 500 часов [6].

Проведенный нами анализ конструкций показывает, что применяемые транспортные и транспортно-технологические системы содержат общий узел – ходовую платформу (шасси) и смонтированное на ней технологическое оборудование (рисунок 1).

Рисунок 1. — Конструктивные схемы транспортных и транспортно-технологических систем, монтируемых на двухосные и трехосные ходовые платформы (шасси)

Сопоставление стоимости шасси и технологического оборудования показало, что у отдельных систем стоимость шасси и технологической части одинаковые и несколько ниже стоимость шасси у сложных систем (таблица 1).

Среди рассмотренных транспортных и транспортно-технологических систем наибольшее распространение получили полуприцепы тракторные самосвальные с автоматически открываемыми бортами, преимущественно задними. Эти машины обладают высокой маневренностью, низкими затратами времени на выгрузку груза и обеспечивает его высокую сохранность. Проведенные патентные исследования и анализ технических характеристик зарубежных аналогов показали, что лучшими зарубежными аналогами являются транспортные системы фирм Bergmann (Германия), Annaburger (Германия), Joskin (Бельгия), Stronga (Германия) [7, 8, 9, 10].

Системы содержат унифицированные многоосные (двухосные или трехосные) шасси и быстросъемное технологическое оборудование, при этом на унифицированные шасси имеется возможность установки разных транспортно-технологических систем, например разбрасывателей органических удобрений, разбрасывателей минеральных удобрений, емкостей и оборудования для внесения полужидких и жидких органических удобрений, перегрузчиков зерна, кормораздатчиков и других.

Исходя из принятой в республике системы ведения сельского хозяйства, номенклатуры и количества сельскохозяйственных грузов, наиболее применяемыми являются полуприцепные самосвальные транспортные средства грузоподъемностью 15 тонн и свыше 20 тонн. В этом случае поставленная задача имеет реальное техническое решение с использованием унифицированных элементов ходовых систем, гидроприводов, транспортирующих устройств и т. п. Не вызывает проблем выбор агрегатируемого энергосредства, в качестве которого можно использовать энергонасыщенные тракторы «Беларус» класса от 2 *т.с.* до 5 *т.с.* В республике имеется тракторов класса 2 *т.с.* 9912 штук, класса 3 *т.с.* 1246 штук, а класса 5–6 *т.с.* 6767 штук [11].

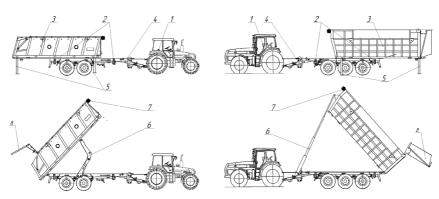

В рамках задания Р.1.3.11.2 разработаны технические требования, конструкторская документация, изготовлены силами ОАО «Вороновская сельхозтехника» экспериментальные образцы полуприцепов самосваль-

Таблица 1. – Стоимость шасси и технологического оборудования прицепов специальных

Наименование узлов	Стоимость шасси и оборудования по маркам полуприцепов, млн <i>руб</i> .				
	ПТ-14С	ПСС-10	ПСС-15	ПСС-20	ПСС-25
Полный комплект, в т.ч. шасси	215 364 372	256 431 655	295 758 517	517 516 260	522 042 503
Технологическая часть	64 609 311	76 929 496	88 727 555	155 254 878	156 612 750
Ходовая часть	150 755 060	179 502 158	207 030 961	362 261 382	365 429 752
Число осей	две	две	две	три	три

ных тракторных грузоподъемностью 15 тонн и свыше 20 тонн, монтируемых на двухосное и трехосное шасси (рисунок 2, 3 и 4).

Технологический процесс работы полуприцепов состоит в следующем: после загрузки сельскохозяйственного груза полуприцеп трактором транспортируется к месту назначения для разгрузки, при разгрузке полуприцепа открывается клапан, включается механизм подъема кузова, в результате чего масса, находящаяся в нем, высыпается. Совершив операцию разгрузки, тракторист возвращает кузов в исходное положение и закрывает клапан.

1 – энергосредство; 2 – механизм смены технологической части; 3 – кузов; 4 – шасси; 5 – опора; 6 – механизм подъема кузова; 7 – тент; 8 – клапан

Рисунок 2. — Схема полуприцепа тракторного самосвального грузоподъемностью 15 m ПТ-15С

Рисунок 3. — Схема полуприцепа тракторного самосвального грузоподъемностью 20 m ПТ-20С

Рисунок 4. — Общий вид экспериментальных образцов полуприцепов самосвальных тракторных грузоподъемностью (а) 15 тонн, (б) свыше 20 тонн на двухосном и трехосном шасси

Для снятия и замены кузова полуприцеп необходимо установить на твердой ровной площадке. Отсоединяется механизм подъема от кузова, и четырьмя гидроцилиндрами, расположенными по периметру шасси, кузов приподнимается. После установки опор гидроцилиндры смены технологического оборудования опускают, технологическое оборудование остается на опорах, а шасси отгоняется трактором. При постановке кузова на шасси все работы осуществляются в обратном порядке.

Экспериментальные образцы содержат быстросъемную технологическую оснастку: цельнометаллические кузова с автоматически открываемыми задними бортами, которые устанавливаются на шасси двухосное или трехосное.

Проведенные исследовательские испытания экспериментальных образцов показали, что они соответствуют техническим требованиям по основным показателям назначения (таблица 2).

 $\it Tаблица~2.-$ Показатели назначения экспериментальных образцов полуприцепов тракторных

Наименование показателя	ПТ-15С	ПТ-20С
Агрегатирование, класс трактора	3	5
Тип полуприцепного шасси	двухосное	трехосное
Рабочая скорость, км/ч	20	20
Транспортная скорость, км/ч	25	25
Грузоподъемность, <i>m</i> , не менее	15	20
Габаритные размеры:		
длина, мм, не более	10200	13200
— ширина, мм, не более	2500	2700
– высота, мм, не более	3500	3800
Масса полуприцепа, кг	7250	9300
Продолжительность смены технологической части, мин	7,2	9,3

С учетом полученных положительных результатов разработаны и утверждены заказчиком исходные требования от $09.04.2015~\rm r.$ и техническое задание от $13.04.2015~\rm r.$ на создание опытных образцов полуприцепов тракторных.

Заключение

Проведенные исследования доказывают необходимость и актуальность данной разработки.

В результате проведения НИОКР созданы экспериментальные полуприцепы самосвальные тракторные грузоподъемностью 15 тонн и свыше 20 тонн и унифицированные двухосное и трехосное шасси. Полуприцепы предназначены для приема, перевозки и выгрузки силосной и сенажной массы, зерна, комбикормов, корнеплодов, жома и др. Обеспечат увеличение производительности по сравнению с полуприцепом ПТ-14С в 1,2 раза.

Полуприцепы самосвальные тракторные агрегатируются с тракторами класса 3,0...5,0. Рабочая скорость — до $20 \ \kappa m/q$, грузоподъемность — $15 \ u$ свыше $20 \ m$, удельный расход топлива за час основного времени — $0.8 \ \kappa z/m$.

Унифицированные шасси можно использовать в составе других транспортно-технологических систем, при этом от 30 до 50 % можно снизить инвестиции на приобретение систем.

Результаты исследовательских испытаний использованы для разработки исходных требований и технического задания на создание опытных образцов, которые утверждены заказчиком.

02.07.2015

Литература

- Измайлов, А.Ю. Развитие транспортной инфраструктуры АПК с учетом требований экологии земледелия / А.Ю. Измайлов, А.А. Артюшин, Н.Е. Евтюшенков, М.Н. Ерохин // Техника в сельском хозяйстве. 2012. № 1.
- 2. Федоренко, В.Ф. Технологии и технические средства для заготовки кормов: каталог-справочник / В.Ф. Федоренко, Н.Ф. Соловьева. М.: ФГНУ «Росинформагротех», 2005. С. 184.
- 3. Бейлис, В.М. Концепция разработки инновационного развития и модернизации комплексной механизации АПК на период до 2025 года / В.М. Бейлис, Н.М. Антышев // Тракторы и сельхозмашины. 2012. № 11.
- 4. Федоренко, В.Ф. Новая техника для агропромышленного комплекса России: каталог. М.: ФГНУ «Росинформагротех», 2007. 256 с.
- Особов, В.И. И в России есть машины для заготовки классных кормов / В.И. Особов // Животноводство России. – 2002. – № 2. – С. 34–35.
- 6. Техника сельскохозяйственная. Показатели надежности. Порядок определения показателей: СТБ 1616–2011. Введ. 2011.09.01. Государственный стандарт Республики Беларусь, 2011. С. 4.
- 7. Полуприцеп тракторный самосвальный фирмы «Bergmann» Vario 400. Технические характеристики [Электронный ресурс]. Режим доступа: http://www.bergmann-goldenstedt.de/front_content.php?idcat=50. Дата доступа: 01.07.2015.
- 8. Модульная система фирмы Annaburger. Технические характеристики [Электронный ресурс]. Режим доступа: http://www.annaburger.de/rus/WechselsystemMultiLandPlus.html. Дата доступа: 01.07.2015.
- 9. Концепция Карго «Joskin». Технические характеристики [Электронный ресурс]. Режим доступа: http://www.joskin.com/?page=cargo_concept&user_lang=ru. Дата доступа: 01.07.2015.
- 10. Транспортно-технологические системы «Stronga». Технические характеристики [Электронный ресурс]. Режим доступа: http://www.stronga.co.uk/Swap-Module-System/SwapLoada.php. Дата доступа: 01.07.2015.
- 11. Оптимизировать структуру машинно-тракторного парка сельскохозяйственных организаций республики в зависимости от их специализации и уровня производства продукции с целью снижения ее ресурсоемкости: отчет о НИР (заключ.) / Национальная академия наук Беларуси. РУП «НПЦ НАН Беларуси по механизации сельского хозяйства»; рук. темы В.И. Володкевич. Минск, 2015. № ГР 20132457.