Заключение

- 1. В настоящее время душевое потребление плодов и ягод отечественного производства составляет около 20 кг, общее потребление около 60 кг. В результате чего в страну ежегодно импортируется более 1 млн тонн плодоягодной продукции.
- 2. Одной из проблем, существующих при возделывании плодов, является опад плодов под действием ветра или в процессе уборки. Ежегодно в стране количество опада составляет от 10 до 40 % от валового сбора плодов (от 15 до 60 тыс. тонн).
- 3. Применение машин для сбора плодов с земли позволяет повысить производительность труда в 20–40 раз по сравнению с ручным трудом и обеспечивает экономический эффект в размере 10 тыс. *руб*. и срок окупаемости 2,2 года.

Литература

- 1. Варламов, Г. П. Машины для уборки фруктов / Г. П. Варламов. М.: Машиностроение, 1978. 216 с.
- 2. Сельское хозяйство Республики Беларусь: стат. сб. / Национальный статистический комитет Республики Беларусь. Минск, 2017. 232 с.
- 3. Юрин, А. Н. Агрегат самоходный универсальный АСУ-6 для уборки плодов и обрезки деревьев в садах интенсивного типа / А. Н. Юрин, А. А. Лях, В. М. Резвинский, А. Д. Кузнецов // Механизация и электрификация сельского хозяйства: межвед. тематич. сб. В 2 т. / РУП «НПЦ НАН Беларуси по механизации сельского хозяйства». Минск, 2013. Вып. 47. Т. 1. С. 218–224.
- 4. Яблоки свежие для промышленной переработки. Технические условия: ГОСТ 27572-87. Введ. 01.07.1989. М.: Стандартинформ, 2011. 40 с.
- 5. Машина самоходная для сбора плодов OB 80R яблок, падалицы яблок, орехов, сливы, груши // Ньютехагро [Электронный ресурс]. Режим доступа: http://www.newtechagro.ru/catalog/mashina_samohodnaya_dlya_sbora_plodov ob 80r yablok.html. Дата доступа: 06.08.2018.
- 6. Механизированная уборка орехов фундука // Батькив Сад [Электронный ресурс]. Режим доступа: https://batkivsad.com.ua/ru/mehanizirovannaya-uborka-orehov-funduka-141/. Дата доступа: 10.08.2018.

УДК 631.358:633.521

Поступила в редакцию 19.10.2018 Received 19.10.2018

С. Ф. Лойко¹, М. Н. Трибуналов²

¹РУП «НПЦ НАН Беларуси по механизации сельского хозяйства» e-mail: vozd_ub_len@tut.by

²УО «Белорусский государственный аграрный технический университет» г. Минск, Республика Беларусь e-mail: tribunalov@mail.ru

ИССЛЕДОВАНИЕ ПРОЦЕССА УПЛОТНЕНИЯ ЛЕНТЫ ЛЬНОТРЕСТЫ В РУЛОНЕ

В статье изложены результаты экспериментальных исследований процесса уплотнения ленты льнотресты в рулоне до заданной линейной плотности прицепным рулонным пресс-подборщиком и даны предложения по выбору параметров работы рулонного пресс-подборщика для обеспечения заданной линейной плотности.

Ключевые слова: лен, лента льна, рулон, пресс-подборщик.

S. F. Loyko¹, M. N. Tribunalov²

¹RUE «SPC NAS of Belarus for Agriculture Mechanization»

Minsk, Republic of Belarus

e-mail: vozd_ub_len@tut.by

²Educational Establishment «Belarusian State Agrarian Technical University»

Minsk, Republic of Belarus

e-mail: tribunalov@mail.ru

STADY OF THE PROCESS OF COMPACTION OF FLAX TAPE IN THE A ROLL

The article presents the results of experimental studies of the process of sealing tape flax in a roll to a given linear density trailed round baler and made suggestions for choosing the operating parameters of the round baler to ensure a given linear density.

Keywords: flax, flax tape, roll, baler,

Введение

Одним из существенных недостатков в технологии производства льноволокна является несогласованность параметров по толщине и весу ленты льнотресты в рулоне и при переработке ее на льнозаводе. Так, в зависимости от ширины захвата применяемой льноуборочной машины масса льнотресты на одном погонном метре в поле может составлять от 0.3 до 0.8 κz и более. Для эффективной работы линии первичной переработки льна необходимо, чтобы масса льнотресты на одном погонном метре ленты в рулоне находилась в пределах 2.0-3.0 κz .

Обеспечить получение рулонов с требуемой линейной плотностью ленты целесообразно при заготовке льнотресты пресс-подборщиками. Поэтому изыскание рабочих органов и определение оптимальных параметров и режимов работы пресс-подборщиков льна при выполнении технологического процесса уборки является актуальной задачей, имеющей важное значение для льноводческой отрасли страны.

Основная часть

С целью уточнения режимов работы пресс-подборщика при формировании рулонов с требуемыми параметрами ленты льнотресты и установления соответствия допущений, принятых при теоретических расчетах, действительным условиям были проведены исследования на экспериментальном образце рулонного пресс-подборщика в полевых условиях.

Согласно требованиям действующих стандартов на первичную переработку льна-долгунца, толщина слоя льнотресты, поступающей в мяльно-трепальный агрегат, должна составлять 5-6 см при линейной плотности около 2,5 кг/м.п. [1]. Данные показатели толщины и линейной плотности ленты льнотресты в рулоне можно обеспечить за счет изменения скоростных режимов работы подбирающего барабана с подающим транспортером и прессующих ремней относительно рабочей скорости машины [2].

Целью исследований являлось определение рациональных параметров работы пресс-подборщика. Программой полевых экспериментальных исследований предусматривалось:

- 1. Исследовать влияние коэффициента λ , характеризующего отношение скорости подбирающего барабана к скорости движения агрегата, на процесс формирования ленты льнотресты в ругоне
- 2. Исследовать влияние коэффициента λ_2 , характеризующего отношение скорости движения подающего транспортера и скорости прессующих ремней, при выбранных оптимальных параметрах скорости движения агрегата и коэффициента λ на процесс формирования ленты льнотресты в рулоне.

Экспериментальный образец рулонного пресс-подборщика позволял:

- изменять скорость поступательного движения агрегата в диапазоне от 6,5 до $12 \ \kappa m/v$;
- изменять соотношение скорости подбирающего барабана и ремней прессовальной камеры относительно скорости агрегата.

Основные параметры работы пресс-подборщика определялись по стандартной методике. Опыты проводились в соответствии с ГОСТ 20915–75, РД 10.23.5–91 и СТБ 1194–2007 с использованием рабочей программы и методики испытаний.

Исследования проводились на полевых фонах сырьевой зоны ОАО «Пуховичский льнозавод». Результаты измерений приведены в таблице 1.

Полученные данные показывают, что значение линейной плотности изменяется прямо пропорционально изменению значения коэффициента λ . Однако при низких λ и высокой исходной плотности ленты льна происходит нарушение технологического процесса подбора: сгруживание и забивание стеблей льна под направляющие прутки подающего транспортера, вплоть до полной остановки машины. При более высоких значениях λ процесс уплотнения практически не происходит. Исходя из этого, в таблице приведены данные, имеющие наименьшие значения λ отношения скорости подбирающего барабана к скорости агрегата.

Таблица 1. – Экспериментальные значения линейной плотности ленты льна в рулоне

Скорость движения агрегата V , $_{M/c}$	Исходная линейная плотность ленты льна, кг/м.п.	Коэффициент λ	Значение линейной плотности ленты льнотресты в рулоне, кг/м.п.
1,8	0,628	0,79	0,79
1,8	0,736	0,85	0,87
1,8	1,028	0,89	1,22
2,5	0,628	0,81	0,75
2,5	0,736	0,86	0,87
2,5	1,028	0,90	1,16
3,3	0,628	0,81	0,78
3,3	0,736	0,86	0,83
3,3	1,028	0,91	1,19

Для аппроксимации имеющихся статистических данных использовано уравнение регрессии линейного вида:

$$y = a_0 + a_1 \cdot x_1,$$

где y – отношение скорости подбирающего барабана к скорости агрегата; x_1 – исходная плотность ленты льна, $\kappa z/m.n.$; a_1 – неизвестные коэффициенты регрессии.

Коэффициенты регрессии определялись методом наименьших квадратов. В результате этого получены уравнения (1), (2), (3), описывающие зависимость отношения поступательной скорости подборщика к рабочей скорости агрегата от исходной плотности ленты льна для рабочих скоростей 1,8,2,5,3,3 m/c соответственно:

$$y = 0,6628 + 0,0002 \cdot x_1; \tag{1}$$

$$y = 0,6919 + 0,0002 \cdot x_1; \tag{2}$$

$$y = 0.6738 + 0.0002 \cdot x_1. \tag{3}$$

По расчетным данным построен график для определения оптимального соотношения скорости подбирающего барабана к скорости движения агрегата (рисунок 1).

С целью определения коэффициента λ_2 отношения скорости подающего транспортера и скорости прессующих ремней прессовальной камеры и влияния его на процесс уплотнения стеблей льна в рулоне (при заданной скорости агрегата и фиксированном отношении λ) производились измерения скорости подающего транспортера и прессующих ремней прессовальной камеры. Результаты измерений представлены в таблице 2.

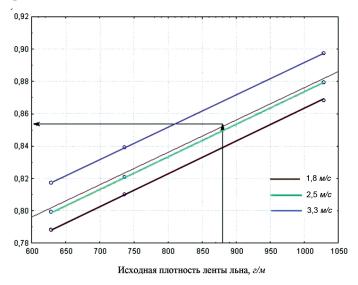


Рисунок 1. – Определение λ в зависимости от исходной плотности ленты льна при заданных рабочих скоростях

Таблица 2. – Экспериментальные значения отношения скорости прессующих ремней к скорости подающего транспортера

Линейная плотность ленты после подбирающего барабана, кг/м.п.	Отношение скорости подающего транспортера к скорости подбирающего барабана, λ_2	Линейная плотность ленты после подающего транспортера, кг/м.п.	Отношение скорости прессующих ремней к скорости подающего транспортера
0,77	0,88	0,88	0,36
0,86	0,9	0,96	0,39
1,19	0,91	1,31	0,52

Отношение λ_2 скорости подающего транспортера к скорости подбирающего барабана ниже 0,88, 0,9 и 0,91 при различной исходной линейной плотности ленты льна приводило к нарушению технологического процесса, в связи с этим для расчета принимались наименьшие соотношения.

Зависимость соотношения скорости транспортера к скорости подбирающего барабана описывается уравнением:

$$\lambda_2 = 0.84 + 0.00006 \cdot x_2$$

где x_2 – плотность ленты после подбирающего барабана, $\kappa z/m.n.$

Зависимость соотношения скорости прессующих ремней к скорости подающего транспортера описывается уравнением:

Рисунок 2. — Зависимость линейной плотности ленты от соотношения скорости прессующих ремней к скорости подающего транспортера

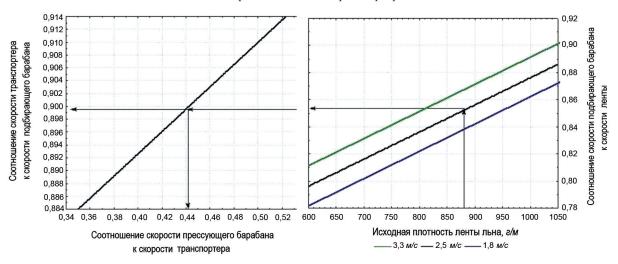


Рисунок 3. — Номограмма для определения оптимальных режимов работы пресс-подборщика для обеспечения заданной линейной плотности ленты льнотресты в рулоне

$$\lambda_3 = 0.0328 + 0.0004 \cdot x_3$$

где x_3 — линейная плотность ленты после транспортера, $\kappa z/m.n.$

График зависимости линейной плотности ленты от соотношения скорости прессующих ремней к скорости подающего транспортера приведен на рисунке 2.

По результатам обработки экспериментальных данных была построена номограмма для определения оптимальных режимов работы пресс-подборщика для обеспечения заданной линейной плотности ленты льнотресты в рулоне (рисунок 3).

Заключение

В результате проведенных экспериментальных исследований были определены оптимальные режимы работы пресс-подборщика при разных рабочих скоростях для обеспечения заданной линейной плотности ленты льнотресты в рулоне.

Это позволяет, независимо от требуемой степени уплотнения, обеспечить достаточную для протекания рабочего процесса скорость прессовальных ремней и вальцов прессовальной камеры. При этом первая ступень уплотнения будет обеспечиваться за счет разности скоростей агрегата и подбирающего барабана.

Литература

- 1. Ковалев, М. М. Параметры и режимы подбирающего аппарата для лубяных культур / М. М. Ковалев // Тракторы и сельскохозяйственные машины. -2007. -№ 3. C. 34-35.
- 2. Чеботарев, В. П. К вопросу формирования слоя льнотресты в рулоне / В. П. Чеботарев, М. Н. Трибуналов, С. Ф. Лойко // Актуальные проблемы науки в агропромышленном комплексе: сб. ст. 62-й междунар. науч.-практ. конф.: в 3 т. / под ред. И. А. Яцюка [и др.]. Кострома: КГСХА, 2011. Т. 2: Архитектура и строительство. Механизация сельского хозяйства. С. 83–84.
- 3. Казакевич, П. П. Льноводство и льнопереработка в Беларуси: проблемы развития / П. П. Казакевич // Белорусское сельское хозяйство. -2010. № 7 (99).
 - 4. Венцель, Е. С. Теория вероятностей / Е. С. Венцель. М.: Наука, 1969. 576 с.

УДК 633.521+677.011

Поступила в редакцию 16.07.2018 Received 16.07.2018

А. Н. Перепечаев, А. Л. Рапинчук, Е. В. Кислов

РУП «НПЦ НАН Беларуси по механизации сельского хозяйства» г. Минск, Республика Беларусь

ВЛИЯНИЕ РЕЖИМОВ РАБОТЫ МЯЛЬНО-ТРЕПАЛЬНОГО АГРЕГАТА НА КАЧЕСТВО ПОЛУЧАЕМОГО КОРОТКОГО ЛЬНОВОЛОКНА В ЗАВИСИМОСТИ ОТ ИСХОДНОГО НОМЕРА ЛЬНОТРЕСТЫ

В статье проведен анализ режимов работы мяльно-трепальной машины для переработки отходов трепания в зависимости от исходного номера льнотресты с целью получения наиболее качественного короткого льноволокна.

Ключевые слова: отходы трепания, короткое льноволокно, режимы работы, трепальные барабаны, номер перерабатываемой льнотресты.

A. N. Perephechaev, A. L. Rapinchuk, E. V. Kislov

RUE «SPC NAS of Belarus for Agriculture Mechanization» Minsk, Republic of Belarus

INFLUENCE OF OPERATING MODES OF THE MILLE-SCUTCHING UNIT ON THE QUALITY OF THE RECEIVED SHORT-TWELFLY DEPENDING ON THE INITIAL NUMBER OF THE FLYING TRAY

The article analyzes the modes of operation of the mille-scutching machine for recycling waste scrap depending on the original number of flax truffles in order to obtain the best quality short flax fiber.

Keywords: scrap waste, short flax fiber, operating modes, combing drums, number of processed flax.