### А. Н. Смирнов<sup>1</sup>, Н. В. Серебрякова<sup>1</sup>, П. В. Авраменко<sup>1</sup>, Н. Д. Лепешкин<sup>2</sup>, Е. Ю. Жушма<sup>1</sup>

<sup>1</sup>УО «Белорусский государственный аграрный технический университет» г. Минск, Республика Беларусь E-mail: ansna2013@mail.ru

<sup>2</sup>РУП «НПЦ НАН Беларуси по механизации сельского хозяйства» г. Минск, Республика Беларусь

# ВЫБОР РАЦИОНАЛЬНОГО РЕЖИМА ДВИЖЕНИЯ ИСПОЛНИТЕЛЬНОГО ЗВЕНА ГИДРОЦИЛИНДРА ФРОНТАЛЬНОГО ПОГРУЗЧИКА С ПОЗИЦИИ ЭНЕРГОСБЕРЕЖЕНИЯ

*Аннотация.* В статье рассмотрена методика выбора рационального режима движения исполнительного звена (штока) гидроцилиндра фронтального погрузчика с позиции энергосбережения.

*Ключевые слова:* погрузчик, шток гидроцилиндра, приведенное усилие, приведенная масса, режим движения, гидравлические потери, энергосбережение.

#### A. N. Smirnov<sup>1</sup>, N. V. Serebryakova<sup>1</sup>, P. V. Auramenka<sup>1</sup>, N. D. Lepeshkin<sup>2</sup>, E. Yu. Zhushma<sup>1</sup>

<sup>1</sup>EI "Belarusian State Agrarian Technical University"

Minsk, Republic of Belarus

E-mail: ansna2013@mail.ru

<sup>2</sup>RUE "SPC NAS of Belarus on Agricultural Mechanization"

Minsk, Republic of Belarus

## SELECTION OF A RATIONAL MODE OF MOTION OF THE EXECUTIVE ELEMENT OF A FRONT LOADER HYDRAULIC CYLINDER FROM THE POSITION OF ENERGY SAVING

*Abstract*. The article discusses the methodology for choosing a rational mode of movement of the actuator link (rod) of a front loader hydraulic cylinder from the position of energy saving.

*Keywords:* loader, hydraulic cylinder rod, reduced force, reduced mass, driving mode, hydraulic losses, energy saving.

#### Введение

Фронтальные погрузчики применяют в различных отраслях народного хозяйства для выполнения широкого спектра работ с использованием различного сменного рабочего оборудования [1]. Спрос на эти универсальные машины постоянно растет. По статистике, каждый третий погрузчик используется в агропромышленном комплексе.

Технический прогресс в этой области направлен на постоянное совершенствование конструкций этих машин, и его основным направлением является улучшение их технико-экономических параметров [2, 3].

Фронтальные погрузчики являются гидрофицированными, циклического действия, имеют погрузочное оборудование, которое приводится в действие, как правило, с помощью двух стреловых и ковшового гидроцилиндров.

Конструкция и параметры погрузочного оборудования фронтального погрузчика, включающая гидромеханизм подъема стрелы, во многом определяет его технико-экономические показатели, основными из которых являются увеличение грузоподъемности (производительности), повышение энергоэффективности и топливной экономичности [4–7].

Рассмотрим вопрос выбора рационального режима движения исполнительного звена (штока с поршнем) стрелового гидроцилиндра с позиции энергосбережения при работе погрузчика.

#### Основная часть

При работе одноковшового фронтального погрузчика в целях сокращения времени цикла и повышения производительности операции подъезда погрузчика с груженым ковшом к транспортному средству и подъема стрелы должны совмещаться.

Найдем закон движения штоков стреловых гидроцилиндров, при котором работа, затраченная на подъем груза, будет минимальной.

Рациональным с точки зрения энергозатрат на подъем груза в ковше будет случай, когда за время подъезда погрузчика к транспортному средству штоки стреловых гидроцилиндров должны переместиться на полный ход  $S_{{}_{\rm III}\,max}$  за время  $t_1.$ 

Рассмотрим для этого два режима движения штоков гидроцилиндров:

- а) движение с постоянной скоростью ( $V_{\rm m1}={\rm const}$ ); б) движение с постоянным ускорением ( $a_{\rm m}={\rm d}^2{\rm S}_{\rm m}$  /  ${\rm d}t^2={\rm const}$ ) переходной процесс.

Тогда комбинированный режим движения штоков можно моделировать как состоящий из указанных режимов.

Принимаем следующие допущения:

- приведенные к штоку стрелового гидроцилиндра приведенная масса  $m_{\mathrm{np}}$  и приведенное усилие  $F_{\rm np}$  движущихся частей погрузочного оборудования постоянны (этот случай параллельнограммного механизма, когда ковш с грузом движутся поступательно при подъеме, при этом плечи стреловых гидроцилиндров в нижнем и верхнем положениях стрелы равны).
  - рабочая жидкость абсолютно несжимаема.
  - трение в шарнирах погрузочного оборудования не учитываем.

Работа, совершаемая стреловыми гидроцилиндрами при установившемся движении на полном ходе штока  $S_{\text{ш}\ max}$ , равна:

$$A_{y} = \left(F_{\text{пр}} + KV_{\text{III}}^{2}\right) S_{\text{III} max}, \, \text{Дж}, \tag{1}$$

где  $F_{\rm np}$  – приведенное к штоку стрелового гидроцилиндра усилие движущихся частей погрузочного оборудования, H; K = const - коэффициент пропорциональности между скоростью штока $V_{\rm m1}^{-2}$  (м/с) и дополнительным со стороны слива рабочей жидкости на поршень усилием, учитывающий потери давления в гидравлических сопротивлениях при турбулентном режиме, кг/м;  $S_{
m min}$  – полный ход стрелового гидроцилиндра, м.

Так как на сообщение штоку скорости  $V_{
m m1}$  требуется определенное время разгона  $t_{
m p}$ , то считаем, что в первом случае  $t_{\rm p} \to 0$  и соответственно путь, пройденный штоком при разгоне,  $S_{\rm mp} \to 0$ вследствие скачкообразного открытия золотника, которое равно  $\approx 0.1$  с.

С учетом кинетической энергии, необходимой для разгона штока, выражение (1) запишем так:

$$A_{y} = m_{\text{пр}} V_{\text{ш1}}^{2} / 2 + (F_{\text{пр}} + K V_{\text{ш1}}^{2}) S_{\text{ш max}}, \text{ Дж.}$$

Так как  $V_{\rm III} = S_{\rm III \; max} \, / \, t_1$ , то работа при постоянной скорости штока равна:

$$A_{y} = m_{\text{пр}} S_{\text{III}}^{2} max / (2t_{1}^{2}) + F_{\text{пр}} S_{\text{III}} max + K S_{\text{III}}^{3} max / (t_{1}^{2}),$$
 Дж.

Работа  $A_{\rm p}$ , совершаемая стреловыми гидроцилиндрами при движении штока с постоянным ускорением  $\hat{a}_{_{\rm III}}$  с учетом сил инерции равна:

$$A_{\rm p} = (m_{\rm mp} a_{\rm m} + F_{\rm mp}) S_{\rm m} max + K \int_0^{S_{\rm m}^3 max} V_{\rm m}^2 dS_{\rm m}, \, Дж.$$
 (3)

Так как при равноускоренном движении

$$a_{\text{III}} = 2S_{\text{III}\,max} / t_1^2 \tag{4}$$

И

$$V_{\rm III}^2 = 2a_{\rm III}S_{\rm III},\tag{5}$$

то, подставляя выражения (4) и (5) в формулу (3), после преобразований получим:

$$A_{\rm p} = 2K S_{\rm III}^3 max / t_1^2 + 2m_{\rm IIp} S_{\rm III}^2 max / t_1^2 + F_{\rm IIp} S_{\rm III} max, Дж.$$
 (6)

График режимов движения штоков гидроцилиндров изображен на рис. 1.

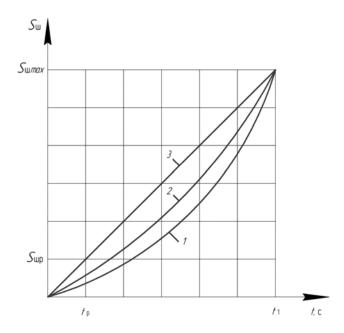



Рис. 1. Режимы движения штоков стреловых гидроцилиндров: I — режим движения штока с постоянным ускорением ( $a_{\mathrm{m}}$  = const;  $S_{\mathrm{mp}}$  =  $S_{\mathrm{m}}$  max); 2 — комбинированный (общий) режим ( $a_{\mathrm{m}}$  = const;  $V_{\mathrm{m1}}$  = const); 3 — рациональный с энергетической точки зрения режим движения штока ( $V_{\mathrm{m1}}$  = const;  $S_{\mathrm{mp}}$  = 0)

Анализ уравнений (2) и (6) показывает, что работа, совершаемая стреловыми гидроцилиндрами в указанных режимах, при одинаковых приведенных массе  $m_{\rm np}$ , усилии  $F_{\rm np}$ , ходе штока  $S_{\rm min}$  и времени  $t_1$ , при постоянной скорости штоков будет всегда меньше, чем в случае их ускоренного движения ( $A_{\rm v} < A_{\rm p}$ ).

Разница работ, совершаемых стреловыми гидроцилиндрами в рассмотренных случаях, составляет:

$$A_{y} - A_{p} = \left(K S_{III}^{3} {}_{max} + 1,5 m_{IIp} S_{III} {}_{max}\right) / t_{1}^{2}, \ Дж.$$

Значит, при комбинированном режиме движения  $(0 < t_p < t_1)$  штоков величина работы  $A_{\kappa}$  для этого случая будет находится в пределах, определяемых уравнениями (2) и (6):

$$A_{_{
m V}} < A_{_{
m K}} < A_{_{
m p}}$$
.

Следовательно, рациональным с позиции энергосбережения будет режим движения штоков гидроцилиндров, при котором они движутся с постоянной скоростью  $V_{\rm m1}$  на протяжении всего хода  $S_{\rm m}$   $_{\rm max}$ , т.е. период разгона (переходный процесс) должен быть наименьшим, что соответствует скачкообразному открытию золотника гидрораспределителя и постоянной подаче регулируемого насоса. На рис. 1 этому режиму соответствует линия 3.

#### Заключение

Разработанная методика выбора рационального движения исполнительного звена (штока) стрелового гидроцилиндра с позиции энергосбережения позволяет снизить до минимума гидравлические потери в сливной линии гидропривода, сохранить время цикла, повысить КПД, уменьшить расход топлива, что следует учитывать при эксплуатации одноковшовых фронтальных погрузчиков.

#### Список использованных источников

- 1. Базанов, А. Ф. Самоходные погрузчики / А. Ф. Базанов, Г. В.Забегалов 2-е изд., перераб. и доп. М.: Машиностроение, 1979.-406 с.
- 2. Радкевич, В. В. Основные тенденции конструирования фронтальных пневмоколесных погрузчиков в отрасли / В. В. Радкевич // Строительные и дорожные машины. 1988. № 3. С. 13–14.
- 3. Смирнов, А. Н. Тенденции развития одноковшовых фронтальных погрузчиков / А. Н. Смирнов, П. В. Авраменко, Н. Г. Серебрякова // Материалы Международной науч.-практ. конференции «Белагро-2019»; БГАТУ, Минск, 6–7 июня 2019. С. 422–426.
- 4. Анализ кинематических схем погрузочного оборудования одноковшовых фронтальных погрузчиков / А. Н. Смирнов [и др.] // Техническое и кадровое обеспечение инновационных технологий в сельском хозяйстве : материалы Междунар. науч.-практ. конф., Минск, 24–25 ноября 2019 года : в 2 ч. / редкол.: И. Н. Шило [и др.]. Минск : БГАТУ, 2019. Ч. 1. С. 270–271.
- 5. Улучшение кинематических параметров гидромеханизма подъема стрелы фронтального погрузчика / А. Н. Смирнов [и др.] // Техническое обеспечение инновационных технологий в сельском хозяйстве : материалы Междунар. на-уч.-практ. конф., Минск, 26–27 ноября 2020 года: сб. науч. ст. / редкол.: Н. Г. Серебрякова [и др.]. Минск : БГАТУ, 2020. С. 207–212.
- 6. Смирнов, А. Н. Рекомендации по повышению энергоэффективности одноковшовых фронтальных погрузчиков при эксплуатации / А. Н. Смирнов, П. В. Авраменко. Минск : БГАТУ, 2020.– 76 с.
- 7. Смирнов, А. Н. Научно-технические основы проектирования фронтальных погрузчиков: монография / А. Н. Смирнов, П. В. Авраменко. Минск:  $5\Gamma$ ATУ, 2021. 172 с.