Б. Б. Хакимов¹, С. Аликулов¹, Ф. Равшанов¹, Н. Ф. Капустин²

¹НИУ «Ташкентский институт инженеров ирригации и механизации сельского хозяйства»

г. Ташкент, Узбекистан E-mail: khakimovbakhodir16@gmail.com ² РУП «НПЦ НАН Беларуси по механизации сельского хозяйства» г. Минск, Республика Беларусь

УСТРОЙСТВО С РОТАЦИОННЫМИ АППАРАТАМИ ДЛЯ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА

Аннотация. В статье представлена теория массообмена в устройстве, предназначенном для получения высококачественной смеси дизельного и биоэтанольного топлива, которое нагревает топливо до определенной температуры и создает качественную смесь. Устройства для процессов массообмена должны быть спроектированы таким образом, чтобы поверхность контакта на них была максимально развита. Соответственно, классификация диффузионного оборудования основана на принципе образования межфазной поверхности.

Ключевые слова: рабочая смесь, ротационный аппарат, устройства, дизельное топливо, ацетон, моторное масло, твердые частицы, металлические примеси, нанос, сорбция, адсорбция, температура.

B. B. Hakimov¹, S. Alikulov¹, F. Ravshanov¹, N. F. Kapustin²

¹NRU "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" Tashkent, Uzbekistan E-mail: khakimovbakhodir16@gmail.com ²RUE "SPC NAS of Belarus for Agricultural Mechanization" Minsk, Republic of Belarus

DEVICE WITH ROTARY APPARATUS FOR PRODUCING DIESEL FUEL

Abstract. The article presents the theory of mass transfer in a device designed to produce a high-quality mixture of diesel and bioethanol fuel, which heats the fuel to a certain temperature and creates a high-quality mixture. Devices for mass transfer processes must be designed in such a way that the contact surface on them is maximally developed. Accordingly, the classification of diffusion equipment is based on the principle of interfacial surface formation.

Keywords: working mixture, rotary apparatus, devices, diesel fuel, acetone, motor oil, solid particles, metal impurities, sediment, sorption, adsorption, temperature.

Введение

При неполном насыщении силы, действующие на жидкость со стороны скелета мелких твердых частиц, – силы сорбции и адсорбции имеют тот же порядок, что и сила тяжести, а при малой вязкости и являются преобладающими. Большую роль также начинают играть силы, возникающие под действием температурного градиента, градиента концентрации, растворенных в масле веществ и др. Определяющей характеристикой процессов массопередачи, протекающих в трехфазных потоках, является взаимодействие фаз, от которого зависит величина межфазной поверхности.

Основная часть

Аппараты для проведения процессов массопередачи должны конструироваться так, чтобы в них максимально развивалась поверхность контакта. В соответствии с этим в основу классификации диффузионной аппаратуры положен принцип образования межфазной поверхности [1, 2] (рис.1). Классификация предусматривает как геометрические особенности аппарата, так и создаваемую в нем гидродинамическую обстановку. Так, в аппаратах с фиксированной поверхностью, например,

в пленочных колоннах с орошаемыми стенками, в режимах, близких к захлебыванию, фиксация поверхности стенкой нарушается. Однако основная тенденция при конструировании таких аппаратов – создать тонкую пленку жидкости на поверхности стенок – остается доминирующей.

Рис. 1. Диффузионный аппарат с дополнительным магнитным устройством: *I* – магнитное устройство; 2 – тепловая трубка; 3 – корпус; 4 – фильтр; 5 – штуцер; 6 – щелевая трубка; 7 – крышка; 8 – тепловой штуцер

Согласно этой классификации, наиболее распространенными в автомобильной промышленности являются устройства для производства высококачественных смесей с использованием магнитного поля, регулирующего вязкость.

Процесс взаимодействия и протекания двух фаз, т.е. фаз дизельного топлива и фаз биоэтанола через внутреннюю щелевую трубку, показан на рис.1. Перенос вещества через щелевую трубку биоэтанола и дизельного топлива осуществляется в соответствии с диффузионным уравнением. Если в диффузионное устройство подводится дополнительная энергия с мешалками, магнитным устройством или ротационными аппаратами, то в фактор f должна быть введена величина, учитывающая этот дополнительный подвод энергии (рис. 1). Дополнительный подвод энергии Э, выраженный через работу, сообщаемую дизтопливу в единице объема, может быть представлен в виде соотношения дополнительной энергии:

$$\Im = \frac{Ln_{\mathcal{M}}^2 d^2}{gHD^2},\tag{1}$$

где L – количество обрабатываемого дизельного топлива, кг; n_{M} – число оборотов рабочего органа в 1 сек; d – определяющий размер рабочего органа, м; H – высота зоны контакта, м; D – диаметр аппарата, м; g – ускорение силы тяжести, м/с².

Фактор гидродинамического состояния двухфазной системы для аппаратов с дополнительным подводом энергии рассчитывается по уравнению

$$f = \frac{\Delta p_{z \to w} + \Im - \Delta p_z}{\Delta p_z}.$$
 (2)

Для максимального протекания смеси дизтоплива и этанола проведем гидравлический расчет щелевой трубки. Мы используем следующее уравнение для расчета количества отверстий для каждой пластины [3, 4]:

$$X = \frac{0.785D^2 F_c}{100l_0 b} = \frac{1}{n} \left(\sqrt{n^2 - 1} + \dots + \sqrt{n^2 - (n^2 - 1)} \right),\tag{3}$$

где D – диаметр колонны, м; F_c – свободное сечение тарелки, м²; b – ширина щели, м; l_0 – длина щели, расположенной по диаметру тарелки, м; n – число щелей. Общую длину l всех щелей определяют из соотношения [4]:

296

$$l = \frac{\pi D^2 F_c}{4b}.$$
(4)

Шаг между щелями вычисляют по формуле:

$$\frac{l_0}{n} = c + b,\tag{5}$$

где *с* – ширина промежутка между соседними щелями, м. Решение уравнения (1) относительно числа отверстий (рис. 2) приведено в табл. 1.

п	X	п	X	п	X
1	0,000	11	8,042	21	15,915
2	0,866	12	8,832	22	16,713
3	1,688	13	9,620	23	17,500
4	2,498	14	10,411	24	18,287
5	3,296	15	11,200	25	19,074
6	4,093	16	11,982	26	19,860
7	4,887	17	12,776	27	20,648
8	5,679	18	13,564	28	21,432
9	6,471	19	14,352	29	22,219
10	7,257	20	15,138	30	23,005

Таблица 1. Количество отверстий в пластине

Рис. 2. График зависимости проходимости от количества щелей в пластинке

Применительно к щелевой трубке сопротивление при движении однофазного потока может быть выражено:

$$\Delta P_{\Gamma} = \xi_{Tp} \frac{\delta_T}{d_2} \cdot \frac{\vartheta^2 \gamma}{2g},\tag{6}$$

где ΔP_{Γ} – сопротивление щелевой трубки, кг/м²; ξ_{Tp} – коэффициент трения, рассчитываемый для щелей или отверстий; δ_T – толщина стенки трубки, м, $d_{\mathfrak{g}}$ – эквивалентный диаметр щелевой трубки, м; ϑ – скорость потоков в щелях трубки, м/сек; γ – удельный вес потока, кг/м³; g – ускорение силы тяжести, м/сек².

В соответствии с определением фактора гидродинамического состояния двухфазной системы *f* сопротивление орошаемой провальной трубки определяется по зависимости

$$\Delta P_{\Gamma \to \mathcal{H}} = \Delta P_{\Gamma} (1+f). \tag{7}$$

Фактор *f* подсчитывается в соответствии с режимом по одному из уравнений: для барботажного режима

$$f = 90 \left(\frac{\delta_T}{b}\right)^{1.5} \left(\frac{L}{G}\right)^{0.52} \left(\frac{\gamma_T}{\gamma_{\mathcal{H}}}\right)^{0.26};$$
(8)

для режима эмульгирования

$$f = 2,5 \cdot 10^3 \left(\frac{L_{CT}}{L}\right)^{1,7} \left(\frac{L}{G}\right)^2 \left(\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{M}}}\right), \quad L_{CT} = 8060 \frac{\mathrm{k}\Gamma \times \mathrm{y}}{\mathrm{M}^2}; \tag{9}$$

для факельного режима:

$$f = \frac{9}{F_c} \left(\frac{D_{CT}}{D}\right)^{1.5} \left(\frac{L}{G}\right)^{0.82} \left(\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{H}}}\right)^{0.41}, D_{CT} = 100 \text{ MM};$$
(10)

для точки повисания (для трубок диаметром ≤ 114 мм при $\left(\frac{L}{G}\right)^2 \left(\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{H}}}\right) > 10^{-3}$)

$$f = 160 \left(\frac{a_{CT}}{a}\right)^{1.5} \left(\frac{L}{G}\right)^{0.82} \left(\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{H}}}\right)^{0.41}, a_{CT} = \text{MM};$$
(11)

для точки инверсии фаз

$$f = 63 \left(\frac{a_{CT}}{a}\right)^3 \left(\frac{L}{G}\right)^{0.52} \left(\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{H}}}\right)^{0.26}.$$
(12)

Линейная скорость биоэтанола в точке повисания для тарелок диаметром > 120 мм и для тарелок меньшего диаметра при значениях величины

$$\left(\frac{L}{G}\right)^2 \left(\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{H}}}\right) < 10^{-3}$$

рассчитывается по уравнению [5-7]

$$\lg\left(\frac{\vartheta^2}{gF_c^2b}\cdot\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{H}}}\mu_{\mathcal{H}}^{0,16}\right) = 0,70-1,75\left(\frac{L}{G}\right)^{\frac{1}{4}}\left(\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{H}}}\right)^{\frac{1}{8}}.$$

Для других режимов используется уравнение:

$$\lg\left(\frac{9^2}{gF_c^2b}\cdot\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{H}c}}\mu_{\mathcal{H}c}^{0,16}\right) = 0,10-2,45\left(\frac{L}{G}\right)^{\frac{1}{4}}\left(\frac{\gamma_{\Gamma}}{\gamma_{\mathcal{H}c}}\right)^{\frac{1}{8}}.$$
(13)

Для ориентировочного расчета коэффициента массопередачи можно использовать [4] в трубках малого диаметра (до 57 мм) и при абсорбции хорошо растворимых газов и ректификации уравнение:

$$\frac{K_{oy}m}{36009_0} = 4,85 \cdot 10^{-6} \operatorname{Re}_{\Gamma}^{1,2} \left(\frac{b_{cm}}{b}\right) (1+f),$$
(14)

где K_{oy} – общий коэффициент массопередачи, отнесенный к площади трубки, м/ч; ϑ_0 – скорость газа (пара) в щелях, м/сек; $b_{cm} = 3$ мм; $\operatorname{Re}_{\Gamma} = \frac{\vartheta_0 d_{\mathfrak{I}} \gamma_{\Gamma}}{\mu_{\Gamma}}, d_{\mathfrak{I}} = 2b; m$ – коэффициент Генри (*m* выражается при абсорбции в килограммах абсорбируемого вещества на 1 кг абсорбента, а при ректификации – в килограммах высококипящего компонента на 1 кг низкокипящего); f – фактор, который подсчитывается в зависимости от режима работы по уравнениям (6)–(10).

Выводы

Определяющей характеристикой процессов массопередачи, протекающих в трехфазных потоках, является взаимодействие фаз, от которого зависит величина межфазной поверхности.

При использовании подогрева топливной смеси дизельного топлива и биоэтанола в энергетических транспортных средствах можно снизить расход топлива на 6–7%, увеличить мощность двигателя на 6–8%, повысить качество работы и производительность на 2,5%.

Список использованных источников

1. Указ Президента Республики Узбекистан от 07.02.2017 № УП-4947 «О Стратегии действий по дальнейшему развитию Республики Узбекистан» [Электронный ресурс]. – Режим доступа: http://www.lex.uz/docs/3107036.

2. Худайкулов, С. И. Математические модели гидравлического удара в гидросооружениях и производственных комплексах / С. И. Худайкулов, Д. С. Яхшибоев. – Ташкент, 2017. – 162 с.

3. Кафаров, В. В. Основы массопередачи / В. В. Кафаров. – М. : Высшая школа, 1972. – С. 37–42, 373–380.

4. Хамидов, А. А. Теорий струй многофазной вязкой жидкости / А. А. Хамидов, С. И. Худойкулов. – Ташкент : Фан, 2005. – 120 с.

5. Зелинский, Ю. Г. Массопередача в химической промышленности / Ю. Г. Зелинский, В. В. Кафаров // Химическая промышленность. – 1961. – № 2. – С. 204–206.

6. Математическая модель установления параметров устройства для получения качественной смеси дизельного топлива и биоэтанола / Б. Б. Хакимов [и др.] // Механика муаммолари. – 2017. – № 4. – С. 81–85.

7. Качество топливо и надежность автотракторных двигателей / Г. В. Крамаренко [и др.]. – Ташкент : ФАН РУз, 1992. – С. 198–199.