# М. А. Прищепов, И. Г. Рутковский

УО «Белорусский государственный аграрный технический университет» г. Минск, Республика Беларусь E-mail: pma.eshp@gmail.com

# ОБОСНОВАНИЕ ВЫБОРА ЭЛЕКТРОТЕПЛОВОЙ СХЕМЫ ПРОТОЧНЫХ ЭЛЕКТРОДНЫХ ЭЛЕКТРОНАГРЕВАТЕЛЕЙ

*Аннотация.* В статье сформулированы рекомендации по выбору электротепловой схемы электродного электронагревателя с учетом технико-экономических параметров.

*Ключевые слова:* электродный электронагреватель, плотность тока, материалоемкость, тепловая инерционность, информационный сигнал.

## M. A. Prishchepov, I. G. Rutkouski

EI "Belarusian State Technological Agrarian University" Minsk, Republic of Belarus E-mail: pma.eshp@gmail.com

# JUSTIFICATION OF THE CHOICE OF THE ELECTRIC THERMAL CIRCUIT OF FLOW-THROUGH ELECTRODE ELECTRIC HEATERS

*Abstract.* The article formulates recommendations on the choice of an electric thermal circuit of an electrode electric heater, taking into account technical and economic parameters.

Keywords: electrode electric heater, current density, material consumption, thermal inertia, information signal.

#### Введение

В настоящее время для тепловой обработки широко используется косвенный электронагрев. Однако ограниченная температуропроводность обрабатываемых сред и невысокая допустимая температура на контактной поверхности теплообмена вызывает техническое противоречие между низкой температурой нагрева обрабатываемой среды и высокой температурой теплогенерирующих элементов [1]. Ситуация усугубляется также проблематичностью оценки температуры в электронагревательных установках (ЭНУ), поскольку серийно выпускаемые датчики температуры (заключенные в защитный кожух) имеют существенную инерционность. Для предотвращения указанных выше недостатков требуется принятие дополнительных мер по обеспечению равномерности нагрева и оценки температуры в ЭНУ. При быстротечности процессов термообработки термолабильных сред для упрощения системы автоматического регулирования (САР) регулирование температуры электродных электронагревателей (ЭЭН) необходимо проводить с использованием малоинерционных датчиков температуры или электродных электронагревателей-датчиков (ЭЭН-Д), в которых в качестве термочувствительного элемента используется термозависимое сопротивление нагреваемой среды. При этом измерение её сопротивления наиболее просто и с высокой точностью можно производить методом нулевого или дифференциального сравнения. Для этого ЭЭН-Д должен иметь один или несколько промежуточных электродов и градиент температуры в обрабатываемой среде [2]. Допустимые технологические параметры ЭЭН для тепловой обработки сельскохозяйственных термолабильных сред, такие как плотность тока и скорость движения в межэлектродном пространстве, определяются исходя из электрохимических процессов, протекающих под воздействием электрического тока и отложений, образующихся на электродах [1-3]. При использовании ЭЭН возникает вопрос обоснования выбора электротепловой схемы (ЭТС) ЭЭН, для обеспечения требований технологического процесса к обеспечению режима электротепловой обработки сельскохозяйственных термолабильных сред, при минимальной материалоемкости и тепловой инерционности ЭНУ.

Цель данной статьи – обосновать выбор ЭТС ЭЭН текучих токопроводящих сред, обеспечивающей требуемую равномерность нагрева при минимальной материалоемкости и тепловой инерционности ЭЭН с возможностью контроля температуры обрабатываемой среды.

#### Основная часть

Правильный выбор ЭТС ЭЭН позволяет вести электронагрев при минимуме затрат. Наиболее равномерный нагрев по ширине электродов обеспечивают следующие типовые ЭТС проточных ЭЭН: однозонного ЭЭН с плоскопараллельной электродной системой (1Z), ЭЭН с секционированной электродной системой (CZ) и зонированной электродной системой (рис. 1).



Рис. 1. Типовые ЭТС проточных ЭЭН: 1Z ЭЭН (*a*), с секционированной (*б*) и зонированной (*в*) электродной системой; *G* – массовый расход обрабатываемой среды, кг/с; *L* – длина электродов ЭЭН, В;  $\theta_{c.в.v}$ ,  $\theta_{c.в.w}$ , – температура на входе и на выходе ЭЭН, °C; *Rm*<sub>1</sub>, *Rm*<sub>2</sub> – термонезависимые сопротивления измерительного моста ЭЭН-Д, Ом; *N* – количество последовательно соединенных зон (на единицу меньше количества электродов эЭН); *U* – напряжение питания, САР – система автоматического регулирования.

Электротепловые процессы (ЭТП), происходящие в представленных ЭЭН вдоль канала протекания среды во времени, описываются следующим дифференциальным уравнением [1]:

$$C_p \cdot \rho_c \cdot H_i \cdot \Pi_i \cdot \frac{\partial \theta_c}{\partial \tau} + C_p \cdot G \cdot \frac{\partial \theta_c}{\partial x} = \frac{U_i^2 \cdot \Pi_i \cdot \eta}{\rho_t(\theta_c) \cdot H_i},$$

где  $C_p$  – удельная теплоемкость обрабатываемой среды, Дж/(кг·°С);  $\rho_c$  – плотность обрабатываемой среды, кг/м<sup>3</sup>;  $H_i$  – межэлектродное расстояние ( $H_i = H$  – при расчете ЭТП в 1Z ЭЭН), м;  $\Pi_i$  – ширина электродов ( $\Pi_i = \Pi$  – при расчете ЭТП в 1Z ЭЭН), м;  $\theta_c$  – температура обрабатываемой среды, °С;  $U_i$  – напряжение питания на *i*й секции (зоне) электронагревателя ( $U_i = U$  – при расчете ЭТП в 1Z и CZ ЭЭН), В; x – текущая координата длины ЭЭН, м;  $\eta$  – коэффициент полезного действия, о.е;  $\rho_t$  – удельное сопротивление обрабатываемой среды, Ом·м.

При описании ЭТП в проточном ЭЭН-Д с зонированной электродной системой (рис. 1, e) к уравнению (1), записанному для *i*-го участка (секции) любой *k*-й зоны, необходимо дополнить систему уравнений для вычисления напряжения  $U_k$  на *k*-й зоне ЭЭН-Д [1]:

$$\begin{aligned}
U_{k} &= \sum_{k=1}^{N} I \cdot R_{k}; \\
I &= U / R; \\
R &= \sum_{k=1}^{N} R_{k}; \\
R_{k} &= \int_{0}^{L_{k}} \rho_{t}(\theta_{c}) dx \cdot \int_{0}^{L_{k}} H_{k} dx / (\int_{0}^{L_{k}} \Pi_{k} dx \cdot L_{k}^{2}),
\end{aligned}$$
(2)

где I – текущее значение полного тока ЭЭН-Д, А;  $R_k$  – сопротивление k-й зоны ЭЭН-Д, Ом; R – полное сопротивление ЭЭН-Д, Ом;  $L_k$  – длина электродов k-й зоны ЭЭН-Д, м.

339

При расчете величины информационного сигнала (ИС) в измерительной диагонали моста ЭЭН-Д $\Delta U$  (рис. 1, *в*) используется выражение (3) [2]:

$$\Delta U = U \cdot R_{pr} \cdot \frac{Rm_{3} \cdot Rm_{2} - Rm_{4} \cdot Rm_{1}}{Rm_{12} \cdot R_{pr} \cdot R + Rm_{3} \cdot Rm_{4} \cdot Rm_{12} + Rm_{1} \cdot Rm_{2} \cdot R},$$
(3)

где  $R_{pr}$  – внутреннее сопротивление измерительного прибора, Ом;  $Rm_3$ ,  $Rm_4$  – термозависимые сопротивления ЭЭНД, образующие мостовую измерительную схему, Ом;  $Rm_{12}=Rm_1+Rm_2$  – сумма термонезависимых сопротивлений мостовой измерительной схемы, Ом;  $R=Rm_3+Rm_4$  – термозависимое сопротивление ЭЭНД, Ом.

В связи с температурной зависимостью удельного сопротивления обрабатываемой среды плотность тока в межэлектродном пространстве возрастает при электротепловой обработке. Снижение материалоемкости и тепловой инерционности ЭНУ с ЭЭН ограничивается величиной допустимой плотности тока. Для сравнительного анализа эффективности ЭНУ на базе секционированных и зонированных ЭЭН сравнивались характеристики секционированных (CZ) ЭЭН, двух (2Z)-, трех (3Z)- и четырехзонного (4Z) ЭЭН-Д с 1Z ЭЭН.

Проточный 1Z ЭЭН характеризуется следующими параметрами: L = 0,0163 м;  $\Pi = 0,04$  м; H = 0,0163 м;  $\rho_o = 37,9$  Ом·м;  $\alpha_T = -0,009$  1/°C; G = 0,002 кг/с;  $C_p = 4174$  кДж/(кг·°C);  $\rho_c = 1000$  кг/м<sup>3</sup>; U = 220 В;  $\eta = 0,95$ .

СZ ЭЭН – П = 0,04 м; η = 0,95;  $X_1 = 0,001$ м;  $H_1 = 0,0104$  м;  $X_2 = 0,011$  м;  $H_2 = 0,0107$ м;  $X_3 = 0,021$  м;  $H_3 = 0,0110$  м;  $X_4 = 0,031$  м;  $H_4 = 0,0115$  м;  $X_5 = 0,041$  м;  $H_5 = 0,0120$  м;  $X_6 = 0,051$  м;  $H_6 = 0,0127$  м;  $X_7 = 0,061$  м;  $H_7 = 0,0136$  м;  $X_8 = 0,071$  м;  $H_8 = 0,0147$  м;  $X_9 = 0,081$  м;  $H_9 = 0,0160$  м; L = 0,084 м;  $H_{10} = 0,0163$  м;  $C_p = 4174$  кДж/(кг·°С);  $\rho_c = 1000$  кг/м<sup>3</sup>;  $\rho_o = 37,9$  Ом·м;  $a_T = -0,009$  1/°С; G = 0,002 кг/с; U = 220 В.

Двухзонный (2Z) ЭЭН-Д – П = 0,04 м; H = 0,0072 м;  $L_1 = 0,101$  м;  $L_2 = 0,089$  м;  $\eta = 0,95$ ;  $\rho_o = 37,9$  Ом·м;  $\alpha_T = -0,009$  1/°C; G = 0,002 кг/с;  $C_p = 4174$  кДж/(кг·°C);  $\rho_c = 1000$  кг/м<sup>3</sup>; U = 220 В.

Трехзонный (3Z) ЭЭН-Д – П = 0,04 м; H = 0,046 м;  $L_1 = 0,099$  м;  $L_2 = 0,089$  м;  $L_3 = 0,083$  м;  $\eta = 0,95$ ;  $C_p = 4174$  кДж/(кг·°С);  $\rho_c = 1000$  кг/м<sup>3</sup>;  $\rho_o = 37,9$  Ом·м;  $\alpha_T = -0,009$  1/°С; G = 0,002 кг/с; U = 220 В.

Четырехзонный (4Z) ЭЭН-Д –  $\Pi$  = 0,04 м; H = 0,0034 м;  $L_1$  = 0,1 м;  $L_2$  = 0,09 м;  $L_3$  = 0,085 м;  $L_4$  = 0,08 м;  $\eta$  = 0,95;  $C_p$  = 4174 кДж/(кг·°С);  $\rho_c$  = 1000 кг/м<sup>3</sup>;  $\rho_o$  = 37,9 Ом·м;  $\alpha_T$  = -0,009 1/°С; G = 0,002 кг/с; U = 220 В.

Исследование проводилось при температуре на входе  $\theta_{c \ 6blx} = 5 \ ^{\circ}$ С, на выходе  $\theta_{c \ 6blx} = 60 \ ^{\circ}$ С. Расчет электродных систем и характеристик ЭЭН и ЭЭН-Д проводился с использованием численных методик расчета. Разработанные математические модели и алгоритмы их исследования [1, 2] позволили проводить расчет электротепловых характеристик, включая и величину ИС ЭЭН-Д, с погрешностью, не превышающей 5–10 % относительно экспериментальных данных, что достаточно для их использования как в практическом проектировании ЭНУ, так и для сравнительного анализа их характеристик.

Неравномерность плотности тока  $\delta_{\Delta J i}$  соответственно для 1Z и CZ ЭЭН, а также для 2Z, 3Z и 4Z проточного ЭЭН-Д рассчитывались по выражению:

$$\delta_{\Delta J \, i} = \left( (J_{\max i} - J_{\min i}) / J_{\min i} \right) \cdot 100, \tag{4}$$

где  $J_{max i}$  – максимальное значение плотности тока на секции ЭЭН, А/м<sup>2</sup>;  $J_{min i}$  – минимальное значение плотности тока на секции ЭЭН, А/м<sup>2</sup>; *i* – индекс, соответствующий 1Z и, CZ ЭЭН, 2Z, 3Z и 4Z проточному ЭЭН-Д.

Снижения неравномерности плотности тока  $\Delta \delta_{\Delta Ji}$  для указанных проточных ЭЭН и ЭЭН-Д рассчитывались по формуле:

$$\Delta \delta_{\Delta J i} = \left( \left( \delta_{\Delta J 1Z} - \delta_{\Delta J i} \right) / \delta_{\Delta J 1Z} \right) \cdot 100, \tag{5}$$

где *і* принимает, соответственно, значения CZ, 2Z, 3Z и 4Z.

Результаты расчета снижения неравномерности плотности тока проточного CZ ЭЭН, 2Z, 3Z и 4Z ЭЭН-Д, по сравнению с проточным 1Z ЭЭН представлены в табл. 1.

| ЭТС ЭЭН            | Минимальная плотность тока $J_{\min}, A/M^2$ | Максимальная плотность тока $J_{\rm max}$ , ${\rm A}/{\rm M}^2$ | Относительная<br>неравномерность Δδ <sub>J i</sub> , % | Снижение неравномерности плотности<br>тока в сравнении с 1Z ЭЭН, % |
|--------------------|----------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|
| Проточный 1Z ЭЭН   | 372,35                                       | 796,11                                                          | 113,81                                                 | _                                                                  |
| Проточный CZ ЭЭН   | 581,23                                       | 764,88                                                          | 31,60                                                  | <i>Dδ</i> <sub>сээн</sub> =72,24                                   |
| Проточный 2Z ЭЭН-Д | 467,83                                       | 767,99                                                          | 64,16                                                  | <i>D</i> δ <sub>2_ЭЭН</sub> =43,62                                 |
| Проточный 3Z ЭЭН-Д | 500,97                                       | 766,76                                                          | 53,06                                                  | <i>D</i> δ <sub>3_ЭЭН</sub> =53,38                                 |
| Проточный 4Z ЭЭН-Д | 510,25                                       | 766,18                                                          | 50,16                                                  | <i>D</i> δ <sub>4_ЭЭН</sub> =55,93                                 |

Таблица 1. Снижение неравномерности плотности тока проточного СZ ЭЭН, 2Z, 3Z и 4Z ЭЭН-Д по сравнению с проточным 1Z ЭЭН

Изменение материалоемкости (площади электродов), соответственно, указанных выше проточных ЭЭН  $\Delta\delta_{S_i}$  по отношению к проточному 1Z ЭЭН рассчитывается по выражению:

$$\delta_{Si} = ((S_{1Z} - S_i) / S_{1Z}) \cdot 100, \tag{6}$$

где  $S_i$  – площади электродов соответствующих, указанных выше, проточных ЭЭН, м<sup>2</sup>;  $S_{1Z}$  – площадь электродов проточного 1Z ЭЭН, м<sup>2</sup>.

Результаты расчета изменения материалоемкости (площади электродов) проточного СZ ЭЭН, 2Z, 3Z и 4Z ЭЭН-Д по сравнению с проточным 1Z ЭЭН представлены в табл. 2.

Таблица 2. Изменение материалоемкости (площади электродов) проточного CZ, 2Z, 3Z и 4Z ЭЭН по сравнению с проточным 1Z ЭЭН

| Название ЭЭН       | Площадь электродов $S_i$ , м <sup>2</sup> | Изменение площади электродов б <sub>5i</sub> , % |
|--------------------|-------------------------------------------|--------------------------------------------------|
| Проточный 1Z ЭЭН   | 0,00888                                   | _                                                |
| Проточный CZ ЭЭН   | 0,00672                                   | -24,32                                           |
| Проточный 2Z ЭЭН-Д | 0,01520                                   | 71,17                                            |
| Проточный 3Z ЭЭН-Д | 0,02168                                   | 144,14                                           |
| Проточный 4Z ЭЭН-Д | 0,02840                                   | 219,82                                           |

Тепловая инерционность объекта характеризуется постоянной времени *T*. Это время, в течение которого температура объекта достигнет 0,638 установившейся температуры. Снижение тепловой инерционности (постоянной времени нагрева) указанных выше проточных ЭЭН  $\Delta\delta_T$  *i* по отношению к проточному 1Z ЭЭH рассчитывается по уравнению:

$$\delta_{T\,i} = \left( \left( T_{1Z} - T_i \right) / T_{1Z} \right) \cdot 100, \tag{7}$$

где  $T_i$  – постоянная времени нагрева проточного СZ ЭЭН, 2Z, 3Z и 4Z ЭЭН-Д, с;  $T_{1Z}$  – постоянная времени нагрева 1Z проточного ЭЭН, с.

Результаты расчета снижения тепловой инерционности (постоянной времени нагрева) проточного СZ ЭЭН, 2Z, 3Z и 4Z ЭЭН-Д по сравнению с проточным 1Z ЭЭН представлены в табл. 3.

Таблица 3. Снижение тепловой инерционности (постоянной времени нагрева) проточного CZ, 2Z, 3Z и 4Z ЭЭН по сравнению с проточным 1Z ЭЭН

| Название ЭЭН       | Постоянная времени $T_{i}$ с | Снижение тепловой инерционности Δδ <sub><i>TI</i></sub> , % |  |
|--------------------|------------------------------|-------------------------------------------------------------|--|
| Проточный 1Z ЭЭН   | 24,49                        | _                                                           |  |
| Проточный СZ ЭЭН   | 15,87                        | 35,20                                                       |  |
| Проточный 2Z ЭЭН-Д | 19,61                        | 19,93                                                       |  |
| Проточный 3Z ЭЭН-Д | 17,86                        | 27,07                                                       |  |
| Проточный 4Z ЭЭН-Д | 16,85                        | 31,20                                                       |  |

При подключении параллельно ЭЭН двух последовательно соединенных сопротивлений (постоянного и переменного) Rm1, Rm2, вместе с двумя термозависимыми сопротивлениями, образующимися между фазным и промежуточным электродом, а также нулевым и промежуточным электродом, образуется измерительный мост (рис. 1, *в*). Сигнал разбаланса моста снимается с промежуточного электрода и точки соединения постоянного и переменного последовательно соединенных сопротивлений. Измерительный мост балансируется при холодном состоянии обрабатываемой среды между электродами. При этом суммарное значение дополнительных сопротивлений Rm1 и Rm2 составляет 6700 Ом. К измерительной диагонали моста подключался электроизмерительный прибор с внутренним сопротивлением  $R_{pr} = 10000$  Ом. При нагреве изменяются сопротивления плеч мостовой схемы, что приводит к разбалансу моста и увеличению уровня ИС в его диагонали. Такой ЭЭН возможно использовать в качестве ЭЭН-Д.

Следует также отметить, что на величину ИС разбаланса моста  $\Delta U$ , помимо температуры на выходе из ЭЭН-Д  $\theta_{c.выx}$ , оказывает влияние напряжение питания U, величина массового расхода обрабатываемой среды G и температура на входе в ЭЭН-Д  $\theta_{c.вx}$ , что объясняется изменением мощности ЭЭН-Д и соответствующим изменением температуры обрабатываемой среды на выходе нагревателя  $\theta_{c.выx}$ . Также на величину ИС оказывает влияние соотношение термозависимых сопротивлений измерительного моста, т. е. выбор промежуточного электрода в качестве измерительного и ТКС обрабатываемой среды. Получаемый ИС может использоваться для сигнализации аварийных режимов работы и контроля отклонений от требуемых режимов технологического процесса.

Относительное повышение величины ИС характеризующего температуру нагрева в проточных ЭЭН-Д с зонированными электродными системами  $\Delta \delta_{\Delta U}$ , по сравнению с ИС, получаемым в регуляторах температуры с серийно выпускаемыми термодатчиками (термометры сопротивления ТСМ и ТСП) на примере датчика температуры РТ-100 (TSP-100), подключенного к контроллеру AL2-14MR-A через адаптер AL2-2PT-ADP, рассчитывалось по выражению:

$$\delta_{\Delta U} = \Delta U / \Delta U_{TS}, \qquad (8)$$

где  $\Delta U_{TS}$  – величина ИС в регуляторах температуры с серийно выпускаемыми термодатчиками, В.

Результаты расчета повышения величины ИС, характеризующего температуру нагрева обрабатываемой среды в 2Z, 3Z и 4Z проточных ЭЭН-Д, по сравнению с ИС датчика температуры PT-100 (TSP-100), подключенного к контроллеру AL2-14MR-А через адаптер AL2-2PT-ADP ( $\Delta U_{TS} = 0.011$  B), представлены в таблице 4.

| Название источника ИС<br>характеризующего температуру нагрева<br>обрабатываемой среды | Номер промежуточного<br>электрода <i>ј</i> | Величина<br>ИС ∆ <i>U</i> , В | Относительное увеличение величины ИС в сравнении с ИС TSP-100 $\delta_{\Delta U},\%$ |
|---------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------|
| Проточный 22 ЭЭН-Д                                                                    | 1                                          | 16,31                         | 1482                                                                                 |
|                                                                                       | 1                                          | 15,23                         | 1384                                                                                 |
| проточный 52 3311-д                                                                   | 2                                          | 15,15                         | 1376                                                                                 |
| Проточный 4Z ЭЭН-Д                                                                    | 1                                          | 12,99                         | 1180                                                                                 |
|                                                                                       | 2                                          | 16,92                         | 1537                                                                                 |
|                                                                                       | 3                                          | 13,01                         | 1182                                                                                 |

Таблица 4. Повышение величины ИС характеризующего температуру нагрева обрабатываемой среды в 2Z, 3Z и 4Z проточных ЭЭН по сравнению с ИС TSP-100

Используя проведенный анализ характеристик ЭЭН и ЭЭН-Д, можно провести выбор рациональной электротепловой схемы ЭЭН и ЭЭН-Д. Помимо этого, использование многозонных ЭЭН-Д позволяет получать мощный ИС, характеризующий температуру нагрева в межэлектродном пространстве. Кроме того, при снижении величины массового расхода обрабатываемой среды многозонного ЭЭН-Д увеличивается температура среды и уменьшается время ее нагрева. При этом напряжение разбаланса моста  $\Delta U$ , равное разбалансу моста при проектируемом режиме работы, достигается также за меньшее время, а установившееся напряжение разбаланса моста  $\Delta U$  возрастает и значительно превышает значение разбаланса для проектируемого режима работы, что возможно использовать для контроля аварийных режимов работы.

### Заключение

1. Секционирование электродных систем наиболее существенно снижает неравномерность плотности тока в межэлектродном пространстве, материалоемкость и тепловую инерционность ЭНУ, однако может применяться только для электротепловой обработки жидких термолабильных сред, не приводящих к образованию застойных зон.

2. Для обработки вязких термолабильных сред целесообразно использование ЭЭН с зонированной электродной системой, при этом обеспечивается возможность контроля температуры в межэлектродном пространстве и защита ЭНУ от аварийных режимов работы.

3. Сравнительный анализ проточных ЭЭН и ЭЭН-Д с плоскопараллельной, секционированной и зонированной электродными системами показал, что ЭЭН и ЭЭН-Д с секционированными и зонированными электродными системами соответственно обеспечивают снижение неравномерности плотности тока в обрабатываемой среде межэлектродного пространства на 43,62–72,24 % в сравнении с однозонным проточным ЭЭН. При использовании секционированых ЭЭН происходит снижение материалоемкости электродов на 24,32 % и тепловой инерционности на 35,20 % в сравнении с однозонным проточным ЭЭН. Использование зонированных ЭЭН и ЭЭН-Д обеспечивает высокую равномерность плотности тока при увеличении их материалоемкости на 71,17– 219,82 % и снижении инерционности на 19,93–31,20 % относительно проточного ЭЭН с однозонной плоскопараллельной электродной системой. Кроте того, зонированные ЭЭН-Д позволяют получать мощный ИС о температуре нагрева среды, более чем в 1000 раз превосходящий ИС от серийно выпускаемых датчиков температуры, что упрощает систему автоматического регулирования тепловых режимов ЭНУ.

#### Список использованных источников

1. Прищепов, М. А. К вопросу разработки проточных электродных электронагревателей (ЭЭН) / М. А. Прищепов, И. Г. Рутковский // Вопросы агроэнергетики. – Минск: Технопринт, 2001. – С. 218–223.

2. Прищепов, М. А. К вопросу анализа чувствительности зонированных электродных электронагревателей-датчиков / М. А. Прищепов, И. Г. Рутковский // Моделирование сельскохозяйственных процессов и машин : тезисы второй республиканской научно-технической конференции, Минск, 21–23 мая 1996 г. – Минск: БАТУ, 1996. – С. 22.

3. Заяц, Е. М. Основы электротехнологических методов обработки влажных кормов / Е. М. Заяц. – Минск: Ураджай, 1997. – 216 с.